Laboratory Investigations

Calcified Tissue International

, Volume 35, Issue 1, pp 455-460

Studies on the role of vitamin D in early skeletal development, mineralization, and growth in rats

  • Scott C. MillerAffiliated withDivision of Radiobiology, Department of Pharmacology, School of Medicine, University of Utah
  • , Bernard P. HalloranAffiliated withDepartment of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison
  • , Hector F. DeLucaAffiliated withDepartment of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison
  • , Webster S. S. JeeAffiliated withDivision of Radiobiology, Department of Pharmacology, School of Medicine, University of Utah

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The role of vitamin D in early skeletal development was studied by measuring serum calcium and phosphorus, osseous tissue quantity and mineralization, and endochondral bone elongation in rat fetuses and pups from vitamin D-replete and vitamin D-deficient mothers. At the 20th day of pregnancy there was a slight, yet significant, increase in the amount of osteoid on trabecular bone surfaces in fetuses from vitamin D-deficient mothers. The fetal bones otherwise appeared normal in spite of severe skeletal changes in the vitamin D-deficient mothers. After parturition, the importance of vitamin D in skeletal development becomes progressively more obvious. Serum calcium levels were slightly, yet significantly, lower in vitamin D-deficient than in vitamin D-replete pups and these levels continued to fall in the vitamin D-deficient pups through lactation and after weaning. At 3 days postpartum, there was a small, yet significant, increase in the amount of osteoid on bone surfaces of the vitamin D-deficient pups. The relative amounts of osteoid in the vitamin D-deficient pups continued to increase through lactation and after weaning when compared with vitamin D-replete pups. By the 14th day of lactation and at later periods, there were significant reductions in metaphyseal mineralized tissues in the vitamin D-deficient pups when compared with the vitamin D-replete pups. At weaning and after weaning, there were substantial increases in growth plate thickness and decreases in longitudinal bone growth in the vitamin D-deficient pups when compared with the vitamin D-replete pups. The results from this study indicate that vitamin D does not appear to play a major role in fetal skeletal development. However, after birth, vitamin D becomes progressively more important with age for normal bone development, mineralization, and endochondral growth.

Key words

Vitamin D Vitamin D deficiency Bone Cartilage Bone development