, Volume 104, Issue 1, pp 3-11

Elevated atmospheric CO2 effects on seedling growth, nutrient uptake, and rhizosphere bacterial populations ofLiriodendron tulipifera L.

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Yellow-poplar (Liriodendron tulipifera L.) seedlings were planted in unfertilized forest soil in boxes with a removable side panel and grown in atmospheres containing either ambient (367 μl l−1) or elevated (692 μl l−1) CO2. Numbers of total bacteria, nitrifiers, and phosphate-dissolving bacteria in the rhizosphere and in nonrhizosphere soil were measured every 6 weeks for 24 weeks. Seedling growth and nutrient content were measured at a final whole-plant harvest. Root, leaf, and total dry weights were significantly greater, and specific leaf area was significantly less, in 692 ml l−1 than in ambient CO2. Uptake per gram plant dry weight of N, S, and B was lower at elevated CO2, whereas uptake of P, K, Cu, Al, and Fe was proportional to growth in both CO2 treatments. Total uptake and uptake per g plant dry weight of Ca, Mg, Sr, Ba, Zn, and Mn were not affected by CO2 treatment. Bacterial populations differed due to CO2 only at the final harvest, where there were significantly fewer nitrite-oxidizers and phosphate-dissolving bacteria in the rhizosphere of seedlings grown at 692 μl l−1 CO2.