Journal of Mathematical Sciences

, Volume 87, Issue 5, pp 3781–3787

On the existence of nontangential boundary values of pseudocontinuable functions

  • A. B. Aleksandrov

DOI: 10.1007/BF02355824

Cite this article as:
Aleksandrov, A.B. J Math Sci (1997) 87: 3781. doi:10.1007/BF02355824


Let θ be an inner function, let θ*(H2)=H2⊖θH2, and let μ be a finite Borel measure on the unit circle\(\mathbb{T}\). Our main purpose is to prove that, if every functionf∈θ*(H2) can be defined μ-almost everywhere on\(\mathbb{T}\) in a certain (weak) natural sense, then every functionf∈θ*(H2) has finite angular boundary values μ-almost everywhere on\(\mathbb{T}\). A similar result is true for the Lp-analog of θ*(H2) (p>0). Bibliography: 17 titles.

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. B. Aleksandrov

There are no affiliations available