Skip to main content
Log in

Monitoring the biomechanical response of individual cells under compression: A new compression device

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Skeletal muscle cells are sensitive to sustained compression, which can lead to the development of pressure sores. Although it is known that this type of tissue breakdown depends on the magnitude and duration of the applied load, the exact relationship between cell deformation and damage remains unclear. To gain more insight into this process, a method has been developed, that incorporates the use of a new loading device and confocal microscopy. The loading device is able to compress individual cells, either statically or dynamically, while measuring the resulting forces. Experiments can be performed under ideal environmental conditions, comparable with those of a CO2 incubator. First compression experiments on C2C12 mouse myoblasts showed the shape changes that cells undergo during static compression by the loading device. Calculations using the three-dimensional confocal images showed no change in volume and an increase in the surface area of the cell as a result of compression. The device presented here provides a useful way to monitor the biomechanical response of skeletal muscle cells during long-term compression experiments. Therefore it will contribute to the knowledge about strain-induced cell damage, as seen in pressure sores and other mechanically induced clinical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbenel, J. C. (1991): ‘Pressure management’,Prosthet. Orthot. Int.,15, pp. 225–231

    Google Scholar 

  • Bluhm, W. F., McCulloch, A. D., andLew, W. Y. W. (1995): ‘Active force in rabbit ventricular myocytes’,J. Biomech.,9, pp. 1119–1122

    Google Scholar 

  • Bouten, C. V. C., Bosboom, E. M. H., andOomens, C. W. J. (1999): ‘The aetiology of pressure sores: a tissue and cell mechanics approach’, invan der Woude, L. H. V. (Ed.): ‘Biomedical aspects of manual wheelchair propulsion, Assistive technology research series, vol. 5’ (IOS, Amsterdam, 1999), pp. 52–62

    Google Scholar 

  • Bouten, C. V. C., Knight, M. M., Lee, D. A., andBader, D. L. (2001): ‘Compressive deformation and damage of muscle cell subpopulations in a model system’,Ann. Biomed. Eng.,29, pp. 153–163

    Article  Google Scholar 

  • Brown, T. D. (2000): ‘Techniques for mechanical stimulation of cellsin vitro: a review’,J. Biomech.,33, pp. 3–14

    Article  Google Scholar 

  • Caille, N., Thoumine, O., Tardy, Y., andMeister, J.-J. (2002): ‘Contribution of the nucleus to the mechanical properties of endothelial cells’,J. Biomech.,35, pp. 177–187

    Article  Google Scholar 

  • Caplan, A., Carlson, B., Faulkner, J., Fischman, D., andGarett, W. (1988): ‘Skeletal muscle’, inWoo, S.L.-Y., andBuckwalter, J. A., (Eds.). Injury and repair of the musculoskeletal soft tissues’ (American Academy of Orthopaedic Surgeons, Park Ridge, 1988), pp. 213–291

    Google Scholar 

  • Chen, C. S., andIngber, D. E. (1999): ‘Tensegrity and mechanoregulation: from skeleton to cytoskeleton’,Osteoarthrit. Cartil.,7, pp. 81–94

    Google Scholar 

  • Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., andTsien, R. Y. (1995): ‘Understanding, improving and using green fluorescent proteins’,Trends Biochem. Sci.,20, pp. 448–455

    Article  Google Scholar 

  • Daniel, R. K., Priest, D. L., andWheatley, D. C. (1982): ‘Etiologic factors in pressure sores: An experimental model’,Med. Rehabil.,62, pp. 492–498

    Google Scholar 

  • Davies, P. F., andTripathi, S. C. (1993): ‘Mechanical stress mechanisms and the cell: an endothelial paradigm’,Circ. Res.,72, pp. 239–245

    Google Scholar 

  • Dong, C., Skalak, R., Sung, K., Schmid-Schönbein, G., andChien, S. (1988): ‘Passive deformation analysis human leukocytes’,J. Biomech. Eng.,110, pp. 27–36

    Google Scholar 

  • Elson, E. (1988): ‘Cellular mechanics as an indicator of cytoskeletal structure and function’,Ann. Rev. Biophys. Biophys. Chem.,17, 397–430

    Article  Google Scholar 

  • Folch, A., andToner, M. (2000): ‘Microengineering of cellular interactions’,Ann. Rev. Biomed. Eng.,2, pp. 227–256

    Article  Google Scholar 

  • Frangos, J. (1993): ‘Physical forces and the mammalian cell’ (Academic Press, London, 1993)

    Google Scholar 

  • Galbraith, C. G., Skalak, R., andChien, S. (1998): ‘Shear stress induces spatial reorganization of the endothelial cell cytoskeleton’,Cell Motil. Cytoskeleton,40, pp. 317–330

    Article  Google Scholar 

  • Guilak, F. (1995): ‘Compression-induced changes in the shape and volume of the chondrocyte nucleus’,J. Biomech.,28, pp. 1529–1541

    Article  Google Scholar 

  • Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., andSambongi, T. (2000): ‘Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton’,Ultramicr.,82, pp. 253–258

    Google Scholar 

  • Ingber, D. E. (1997): ‘Tensegrity: the architectural basis of cellular mechanotransduction’,Ann. Rev. Physiol.,59, pp. 575–599

    Google Scholar 

  • Komuro, I., Katoh, Y., Kaida, T., Shibazaki, Y., Kurabayashi, M., Hoh, E., Takaku, F., andYazaki, Y. (1991): ‘Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes’,J. Biol. Chem.,266, pp. 1265–1268

    Google Scholar 

  • Krouskop, T. A. (1983): ‘A synthesis of the factors that contribute to pressure sore formation’,Med. Hyp.,11, pp. 255–267

    Google Scholar 

  • McMahon, D. K., Anderson, P. A. W., Nassar, R., Bunting, J. B., Saba, Z., Oakeley, A. E., andMalouf, N. N. (1994): ‘C2C12 cells: biophysical, biochemical, and immunocytochemical properties’,Am. J. Physiol.,266, pp. C1795–1802

    Google Scholar 

  • Moore, S. W. (1994): ‘A fiber optic system for measuring dynamic mechanical properties of embryonic tissues’,IEEE Trans. Biomed. Eng.,41, pp. 45–50

    Article  Google Scholar 

  • Nola, G. T., andVistnes, L. M. (1980): ‘Differential response of skin and muscle in the experimental production of pressure sores’,Plast. Reconst. Surg.,66, pp. 728–733

    Google Scholar 

  • Petersen, N. O., McConnaughey, W. B., andElson, E. L. (1982): ‘Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B’,Cell Biol.,79, pp. 5327–5331

    Google Scholar 

  • Ra, H. J., Picart, C., Feng, H., Sweeney, H. L., andDischer, D. E. (1999): ‘Muscle cell peeling from micropatterned collagen: direct probing of focal and molecular properties of matrix adhesion’,J. Cell Sci.,112, pp. 1425–1436

    Google Scholar 

  • Sato, M., Theret, D. P., Wheeler, L. T., Ohshima, N., andNerem, R. M. (1990): ‘Application of the micropipette technique of the measurement of cultured porcine aortic endothelial cell viscoelastic properties’,J. Biomech. Eng.,112, pp. 263–268

    Google Scholar 

  • Thoumine, O., Ott, A., Cardoso, O., Meister, J.-J. (1999a): ‘Microplates: a new tool for manipulation and mechanical perturbation individual cells’,J. Biochem. Biophys. Methods,39, pp. 47–62

    Article  Google Scholar 

  • Thoumine, O., Cardoso, O., andMeister, J.-J. (1999b): ‘Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study’,Eur. Biophys. J.,28, pp. 222–234

    Article  Google Scholar 

  • Vandenburgh, H. (1992): ‘Mechanical forces and their second messengers in stimulating cell growthin vitro’,Am. J. Physiol.,262, R350-R355

    Google Scholar 

  • Wang, N., Butler, J., andInber, D. E. (1993): ‘Mechanotransduction across the cell surface and through the cytoskeleton’,Science,260, pp. 1124–1127

    Google Scholar 

  • Yoshikawa, Y., Yasuike, T., Yagi, A., andYamada, T. (1999): ‘Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy’,256, pp. 13–19

  • Zhang, Z., Fernczi, M., Lush, A., andThomas, C. (1991): ‘A novel micromanipulation technique for measuring the bursting strength of single mammalian cells’,Appl. Microbiol. Biotech.,36, pp. 208–210

    Article  Google Scholar 

  • Zhu, C., Bao, G., andWang, N. (2000): ‘Cell mechanics: mechanical response, cell adhesion, and molecular deformation’,Ann. Rev. Biomed. Eng.,2, pp. 189–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. G. Peeters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeters, E.A.G., Bouten, C.V.C., Oomens, C.W.J. et al. Monitoring the biomechanical response of individual cells under compression: A new compression device. Med. Biol. Eng. Comput. 41, 498–503 (2003). https://doi.org/10.1007/BF02348096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348096

Keywords

Navigation