Medical and Biological Engineering and Computing

, Volume 42, Issue 3, pp 407–412

Removal of ocular artifacts from electro-encephalogram by adaptive filtering


    • Department of Biomedical, Industrial & Human Factors EngineeringWright State University
  • G. Wilson
    • Air Force Research LaboratoryWright-Patterson Air Force Base
  • C. Russell
    • Air Force Research LaboratoryWright-Patterson Air Force Base

DOI: 10.1007/BF02344717

Cite this article as:
He, P., Wilson, G. & Russell, C. Med. Biol. Eng. Comput. (2004) 42: 407. doi:10.1007/BF02344717


The electro-encephalogram (EEG) is useful for clinical diagnosts and in biomedical research. EEG signals, however, especially those recorded from frontal channels, often contain strong electro-oculogram (EOG) artifacts produced by eye movements. Existing regression-based methods for removing EOG artifacts require various procedures for preprocessing and calibration that are inconvenient and timeconsuming. The paper describes a method for removing ocular artifacts based on adaptive filtering. The method uses separately recorded vertical EOG and horizontal EOG signals as two reference inputs. Each reference input is first processed by a finite impulse response filter of length M (M=3 in this application) and then subtracted from the original EEG. The method is implemented by a recursive leastsquares algorithm that includes a forgetting factor (λ=0.9999 in this application) to track the non-stationary portion of the EOG signals. Results from experimental data demonstrate that the method is easy to implement and stable, converges fast and is suitable for on-line removal of EOG artifacts. The first three coefficients (up to M=3) were significantly larger than any remaining coefficients.


Adaptive filteringEEGEOGArtifact removal
Download to read the full article text

Copyright information

© IFMBE 2004