Skip to main content
Log in

Forward electrical transmission line model of the human arterial system

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A forward mathematical model of the human arterial system, based on an electrical transmission line analogy, has been developed, using a new method for the calculation of peripheral impedance. Simulations of the human arterial system under normal and stenotic arterial conditions were compared with other published simulations, as well as measured clinical data and known clinical quantitative and qualitative characteristics: the harmonic arterial input impedance spectrum demonstrated a mean error of 0.07–0.1 mmHg.s.cm−1, compared with equivalent simulation and physiological data, respectively; qualitative and quantitative variation of blood pressure and flow waveforms along the arterial tree followed clinical trends; arterial pulse wave velocities compared favourably with physiological data close to the aortic root (−50–20 cm s−1 difference), but there were larger differences in the periphery (149–1192 cm s−1 difference); qualitative as well as quantitative variation of blood flow waveforms with progressive stenotic arterial disease, as measured by the pulsatility index, demonstrated an error between 2 and 16% in comparison with mean clinical data for critical stenosis. Under the given test conditions, the forward model was found closely to represent clinically observed haemodynamic characteristics of the human arterial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avolio, A. P. (1980): ‘Multi-branched model of the human arterial system’,Med. Biol. Eng. Comput.,18, pp. 709–718

    Google Scholar 

  • Cavalcanti, S., Belardinelli, E., andSeveri, S., (1995): ‘Numerical simulation of the short-term heart regulation’, inPower, H., andHart, R. T. (Eds): ‘Computer simulations in biomedicine’ (Computational Mechanics Publications Southampton, 1995), pp. 115–122

    Google Scholar 

  • Chen, C.-W., Shau, Y.-W. R., andWu, C.-P. (1997): ‘Analog transmission line model for simulation of systemic circulation’,IEEE Trans. Biomed. Eng.,44, pp. 90–94

    Google Scholar 

  • Clifford, P. C., Skidmore, R., Bird, D. R., Woodcock, J. P., andBaird, R. N. (1981): ‘The role of pulsatility index in the clinical assessment of lower limb ischaemia’,J. Med. Eng. Tech.,5, pp. 237–240

    Google Scholar 

  • Corey, P. D., andWemple, R. R. (1975): ‘A combined left ventricle systemic arterial model’,J. Biomech.,8, pp. 9–15

    Article  Google Scholar 

  • Einav, S., Aharoni, S., andManoach, M. (1988): ‘Exponentially tapered transmission line model of the arterial system’,IEEE Trans. Biomed. Eng.,35, pp. 333–339

    Article  Google Scholar 

  • Einav, S., Aharoni, S., andManoach, M. (1992): ‘Pulse transmission and impedance characteristics of a non-uniform circulatory model’,J. Biomed. Eng.,14, pp. 390–396

    Google Scholar 

  • Guha, S. K. (1970): ‘Haemodynamics of the small arterial region in the femoral vascular bed’,Med. Biol. Eng.,8, pp. 291–299

    Google Scholar 

  • Guyton, A. C. (1981): ‘Physiology of the human body’, 6th edn (Saunders College Publishing, London, 1981)

    Google Scholar 

  • Helal, M. A., Watts, K. C., Marble, A. E., andSarwal, S. N. (1990): ‘Theoretical model for assessing hemodynamics in arterial networks which include bypass grafts’,Med. Biol. Eng. Comput.,28, pp. 465–473

    Google Scholar 

  • Helal, M. A. (1994): ‘Derivation of closed-form expression for the cerebral circulation models’,Comput. Biol. Med.,24, pp. 103–118

    Article  Google Scholar 

  • Jager, G. N., Westerhof, N., andNoordegraaf, A. (1965): ‘Oscillatory flow impedance in electrical analog of arterial system’,Circ. Res.,16, pp. 121–133

    Google Scholar 

  • John, L. R. (2000): ‘An inverse transmission line model of the lower limb arterial system’. PhD thesis, University of Cape Town, South Africa

    Google Scholar 

  • Kapal, E., Martini, F., andWetterer, E. (1951): ‘Uber die zuverlassigkeit der bisherigen bestimmungsart der pulswellengeschwindigkeit’,Z. Biol.,104, pp. 75–86

    Google Scholar 

  • Karamanoglu, M., Gallagher, D. E., Avolio, A. P., andO'Rourke, M. F. (1994): ‘Functional origin of reflected pressure waves in a multibranched model of the human arterial system’,Am. J. Physiol.,267 (Heart Circ. Physiol.,36), pp. H1681-H1688

    Google Scholar 

  • Karamanoglu, M., Gallagher, D. E., Avolio, A. P., andO'Rourke, M. F. (1995): ‘Pressure wave propagation in a multibranched model of the human upper limb’,Am. J. Physiol.,269 (Heart Circ. Physiol.,38), pp. H1363-H1369

    Google Scholar 

  • Karamanoglu, M. (1997): ‘A system for analysis of arterial blood pressure waveforms in humans’,Comput. Biomed. Res.,30, pp. 244–255

    Article  Google Scholar 

  • LaCourse, J. R., Mohanakrishnan, G., andSivaprasad, K. (1986): ‘Simulations of arterial pressure pulses using a transmission line model’,J. Biomech.,19, pp. 771–780

    Article  Google Scholar 

  • Latham, R. D., Westerhof, N., Sipkema, P., Rubal, B. J., Reuderink, P., andMurgo, J. P. (1985): ‘Regional wave travel and reflections along the human aorta: a study with six simultaneousmicromanometric pressures’,Circulation,72, pp. 1257–1269

    Google Scholar 

  • Learoyd, B. M., andTaylor, M. G. (1966): ‘Alterations with age in the viscoelastic properties of human arterial walls’,Circ. Res.,18, pp. 278–292

    Google Scholar 

  • Luchsinger, P. C., Snell, R. E., andPatel, D. J. (1964): ‘Instantaneous pressure distribution along the human aorta’,Circ. Res.,11, pp. 885–888

    Google Scholar 

  • McIlroy, M. B., Seitz, W. S., andTargett, R. C. (1986): ‘A transmission line model of the normal aorta and its branches’,Cardiovasc. Res.,20, pp. 81–587

    Google Scholar 

  • McIlroy, M. B., andTargett, R. C. (1988): ‘A model of the systemic arterial bed showing ventricular-systemic arterial coupling’,Am. J. Physiol.,254, pp. 609–616

    Google Scholar 

  • Miller, M. A., Drakontides, A. B., andLeavell, L. C. (1977): ‘Kimber-Gray-Stackpoles anatomy and physiology’, 17th edn (Macmillan Publishing Co. Ltd, New York, 1977)

    Google Scholar 

  • Mills, C. J., Gabe, I. T., Gault, J. H., Mason, D. T., Ross, J., Braunwald, E., andShillingford, J. P. (1970): ‘Pressure-flow relationships and vascular impedance in man’,Cardiovasc. Res.,4, pp. 405–417

    Google Scholar 

  • Milnor, W. R. (1989): ‘Hemodynamics’, 2nd edn (Williams & Wilkinson, Baltimore, 1989)

    Google Scholar 

  • Nichols, W. W., andO'Rourke, M. F. (Eds) (1990): ‘McDonald's blood flow in arteries’, 3rd edn (Lea & Febiger, Philadelphia, 1990)

    Google Scholar 

  • O'Rourke, M. F., andAvolio, A. P. (1980): ‘Pulsatile flow and pressure in human systemic arteries, Studies in man and in a multibranched model of the human systemic arterial tree’,Circ. Res.,46, pp. 363–372

    Google Scholar 

  • Raines, J. K., Jafrin, M. Y., andShapiro, A. H. (1974): ‘A computer simulation of arterial dynamics in the human leg’,J. Biomech.,7, pp. 77–91

    Article  Google Scholar 

  • Ramo, S., Whinnery, J. R., andVan Duzer, T. (1965): ‘Fields and waves in communication electronics’ (John Wiley & Sons Inc., New York, 1965)

    Google Scholar 

  • Remington, R. B., andO'Brien, L. J. (1970): ‘Construction of aortic flow pulse from pressure pulse’,Am. J. Physiol.,218, pp. 437–447

    Google Scholar 

  • Roller, M. L., andClarke, M. E. (1969): ‘Precusor cerebral circulation models’,J. Biomech.,2, pp. 241–250

    Article  Google Scholar 

  • Snyder, M. F., Rideout, V. C., andHillestad, R. J. (1968): ‘Computer modelling of the human systemic arterial tree’,J. Biomech.,1, pp. 341–353.

    Article  Google Scholar 

  • Strandness, D. E. Jr (1986): ‘Ultrasound in the study of atherosclerosis’,Ultrasound Med. Biol. 12, pp. 453–464

    Article  Google Scholar 

  • Strandness, D. E. Jr (1991): ‘Noninvasive vascular laboratory and vascular imaging’, inYoung, J. R., Graor, R. A. Olin, J. W., andBartholomew, J. R. (Eds): ‘Peripheral vascular diseases’ (osby Year Book, London, 1991), chap. 3, pp. 39–69

    Google Scholar 

  • Taylor, M. G. (1966): ‘Wave transmission though an assembly of randomly branching elastic tubes’,Biophys. J.,6, pp. 697–716

    Google Scholar 

  • Ursino, M. (1995): ‘A mathematical model of the interaction between arterial and cardiopulmonary baroreceptors during acute cardiovascular stress’ inPower, H., Hart, R. T. (Eds): ‘Computer simulations in biomedicine’ (Computational Mechanics Publications, Southampton, 1995), pp. 139–146

    Google Scholar 

  • Westerhof, N., Bosman, F., Devries, C. J., andNoordegraaf, A. (1969): ‘Analog studies of the human systemic arterial tree’,J. Biomech.,2, pp. 121–143

    Article  Google Scholar 

  • Wezler, K., andBoger, A. (1939): ‘Die dynamik des arteriellen systems. Der arterielle blutdruck und seine komponenten’,Ergebn. Physiol.,41, pp. 292–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. John.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, L.R. Forward electrical transmission line model of the human arterial system. Med. Biol. Eng. Comput. 42, 312–321 (2004). https://doi.org/10.1007/BF02344705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344705

Keywords

Navigation