Achim, A., Bezerianos, A., andTsakalides, P. (2001) ‘Novel Bayesian multiscale method for speckle removal in medical ultrasound images’,*IEEE Trans. Med. Imag.*,**20**, pp. 772–783

Arsenault, H. H., andApril, G. (1976): ‘Properties of speckle integrated with a finite aperture and logarithmically transformed’,*J. Opt. Soc. Am.*,**66**, 1160–1163

Chang, G., Yu B., and

Vetterli, M. (2000): ‘Spatially adaptive wavelet thresholding with context modelling for image denoising’,

*IEEE Trans. Image. Proc.*,

**9**, pp. 1522–1531

MathSciNet
Chivers, R. C., Davies, I. J., andDuarte, F. M. (1986): ‘Perceptual studies and ultrasonic B-scam textures’,*Phys. Med. Biol.*,**31**, pp. 627–634

Donoho, D. L., and

Johnstone, I. M. (1994): ‘Ideal spatial adaptation via wavelet shrinkage’,

*Biometrica*,

**81**, pp. 425–455

MathSciNet
Donolho, D. L. (1995): ‘Denoising by soft-thresholding’,*IEEE Trans. Inf. Theory*,**41**, pp. 613–627

Donolho, D. L., andJohnstone, I. M. (1995): ‘Adapting to unknown smoothness via wavelet shrinkage’,*J. Am. Stat. Assoc.*,**90**, pp. 1200–1224

Ghofrani, S., Jahed-Motlagh, M. R., andAyotollahi, A. (2001): ‘An adaptive speckle suppression filter based on Nakagami distribution’ (IEEE, 2001)

Goodman, J. W. (1976): ‘Some fundamental properties of Speckle’,*J. Opt. Soc. Am.*,**66**, pp. 1145–1150

Guo, H., Odegard, M. L., Gopinath, R. A., Selesnick, I. W., andBurrus, C. S. (1994): ‘Wavelet based speckle reduction with application to SAR based ATD/R’,*Proc. ICIP*, Vol.**1**, pp. 75–79

Gupta, S., andKaur, L. (2002): ‘Wavelet based image compression using Daubechies filters’.*8th Nat. Conf. on Communications*, IIT, Bombay

Jain, A. K. (1989): ‘Fundamentals of digital image processing’ (Prentice Hall, Englewood Cliffs, NJ, 1989)

Jansene, M. (2001): ‘Noise reduction using wavelets, Lecture series in Statistics’, (Springer-Verlag, New York, 2001)

Joshi, R. L., Crump, V. J., and

Fisher, T. R. (1995): ‘Image subband coding using arithmetic and trellis coded quantization’,

*IEEE Trans. Circuits Syst. Video Technol.*,

**5**, pp. 515–523

CrossRef
Kremkau, F. W., andTaylor, K. J. W. (1986): ‘Artefacts in ultrasound imaging’,*J. Ultrasound Med.*,**5**, pp. 227–237

Loannidis, A., Kazakos, D., andWatson, D. D. (1984): ‘Application of median filtering on nuclear medicine scintigram images’,*Proc. 7th Int. Conf. Pattern Recognition*, pp. 33–36

Loupas, T., McDicken, W. N., andAllen, P. L. (1987): ‘Noise reduction in ultrasonic images by digital filtering’,*Br. J. Radiol.*,**60**, pp. 389–392

Lowe, H., Bamber, J. C., Webb, S., andCook-Martin, G. (1988): ‘Perceptual studies of contrast, texture and detail in ultrasound B-scans’,*SPIE Proc.*,**914**, pp. 40–47

Mallat, S. (1989): ‘A theory for multiresolution signal decomposition: the wavelet representation’,

*IEEE Trans. Patterns Anal. Mach. Intell.*,

**11**, pp. 674–692

MATH
Mallat, S., (1998): ‘A wavelet tour of signal processing’ (Academic Press, New York, 1998)

Ritenour, E. R., Nelson, T. R., andRaff, U. (1984): ‘Application of median filter to digital readiographic images’.*Proc. 7th Int. Conf. Acoust. Speech, Signal Processing*, pp. 23.1.1–23.1.4

Sattar, F., Floreby, L., Salomonsson, G., andLovstrom, B. (1997): ‘Image enhancement based on a nonlinear multiscale method’,*IEEE Trans. Image Proc.*,**6**, pp. 888–895

Simoncelli, E. P., andAdelson, E. H. (1996): ‘Noise removal via Bayesian wavelet coring’,*Third Int. Conf. Image Processing*,**1**, pp. 379–382

Smith, S. W., and

Lopez, H. (1982): ‘A contrast detail analysis of diagnostic ultrasound imaging’,

*Med. Phys.*,

**9**, pp. 4–12

CrossRef
Stein, C. M. (1981): ‘Estimation of the mean of a multivariate normal distribution’,

*Ann. Statist.*,

**9**, pp. 1135–1151

MATHMathSciNet