, Volume 68, Issue 4, pp 589-606

A hierarchical bayesian statistical framework for response time distributions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This paper provides a statistical framework for estimating higher-order characteristics of the response time distribution, such as the scale (variability) and shape. Consideration of these higher order characteristics often provides for more rigorous theory development in cognitive and perceptual psychology (e.g., Luce, 1986). RT distribution for a single participant depends on certain participant characteristics, which in turn can be thought of as arising from a distribution of latent variables. The present work focuses on the three-parameter Weibull distribution, with parameters for shape, scale, and shift (initial value). Bayesian estimation in a hierarchical framework is conceptually straightforward. Parameter estimates, both for participant quantities and population parameters, are obtained through Markov Chain Monte Carlo methods. The methods are illustrated with an application to response time data in an absolute identification task. The behavior of the Bayes estimates are compared to maximum likelihood (ML) estimates through Monte Carlo simulations. For small sample size, there is an occasional tendency for the ML estimates to be unreasonably extreme. In contrast, by borrowing strength across participants, Bayes estimation “shrinks” extreme estimates. The results are that the Bayes estimators are more accurate than the corresponding ML estimators.

We are grateful to Michael Stadler who allowed us use of his data. This research is supported by (a) National Science Foundation Grant SES-0095919 to J. Rouder, D. Sun, and P. Speckman, (b) University of Missouri Research Board Grant 00-77 to J. Rouder, (c) National Science Foundation grant DMS-9972598 to Sun and Speckman, and (d) a grant from the Missouri Department of Conservation to D. Sun.