1.

D. Avis and V. Chvátal, Notes on Bland's Pivoting Rule,

*Math. Programming Study.*, vol. 8, pp. 24–34, 1978.

CrossRef2.

R. G. Bland, New Finite Pivoting Rules for the Simplex Method,

*Math. Oper. Res.*, vol. 2, pp. 103–107, 1977.

MathSciNetCrossRefMATH3.

D. R. Chand and S. S. Kapur, An Algorithm for Convex Polytopes,

*J. Assoc. Comput. Mach.*, vol. 17, pp. 78–86, 1970.

MathSciNetCrossRefMATH4.

B. Chazelle, An Optimal Convex Hull Algorithm and New Results on Cuttings,*Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science*, pp. 29–38, 1991.

5.

V. Chvátal,

*Linear Programming*, Freeman, San Francisco, 1983.

MATH6.

M. E. Dyer, The Complexity of Vertex Enumeration Methods,

*Math. Oper. Res.*, vol. 8, pp. 381–402, 1983.

MathSciNetCrossRefMATH7.

H. Edelsbrunner,

*Algorithms in Combinatorial Geometry*, Springer-Verlag, New York, 1987.

CrossRefMATH8.

H. Edelsbrunner and L. Guibas, Topologically Sweeping an Arrangement,

*J. Comput. Syst. Sci.*, vol. 38, pp. 165–194, 1989.

MathSciNetCrossRefMATH9.

H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing Arrangements of Lines and Hyperplanes with Applications,

*SIAM J. Comput. Sci.*, vol. 15, pp. 341–363, 1986.

MathSciNetCrossRefMATH10.

K. Fukuda, Oriented Matroid Programming, Ph.D. Thesis, University of Waterloo, 1982.

11.

K. Fukuda and T. Matsui, On the Finiteness of the Criss-Cross Method,*European J. Oper. Res.*, to appear.

12.

M. E. Houle, H. Imai, K. Imai, J.-M. Robert, and P. Yamamoto, Orthogonal Weighted Linear*L*
_{1} and*L*
_{∞} Approximation and Applications, Manuscript, September 1990.

13.

T. H. Mattheiss and D. S. Rubin, A Survey and Comparison of Methods for Finding all Vertices of Convex Polyhedral Sets,

*Math. Oper. Res.*, vol. 5, pp. 167–185, 1980.

MathSciNetCrossRef14.

T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall,*The Double Description Method*, Annals of Mathematical Studies, vol. 8, Princeton University Press, Princeton, NJ, 1953.

15.

K. Paparrizos, Pivoting Rules Directing the Simplex Method Through all Feasible Vertices of Klee-Minty Examples,

*OPSEARCH*, vol. 26, pp. 77–95, 1989.

MathSciNetMATH16.

G. Rote, Degenerate Convex Hulls in High Dimensions Without Extra Storage,*Proc. 8th Annual Symposium on Computational Geometry*, ACM Press, New York, pp. 26–32, 1992.

17.

R. Seidel, A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions, Report 81-14, Department of Computer Science, University of British Columbia, 1981.

18.

R. Seidel, Constructing Higher-Dimensional Convex Hulls at Logarithmic Cost per Face,*Proc. 1986 Symposium on the Theory of Computing*, pp. 404–413.

19.

T. Terlaky, A Convergent Criss-Cross Method,

*Math. Operationsforsch. Statist. Ser. Optim.*, vol. 16, pp. 683–690, 1985.

MathSciNetMATH20.

T. Terlaky, A Finite Criss-Cross Method for Oriented Matroids,

*J. Combin. Theory Ser. B*, vol. 42, pp. 319–327, 1987.

MathSciNetCrossRefMATH21.

M. Todd, Linear and Quadratic Programming in Oriented Matroids,

*J. Combin. Theory Ser. B*, vol. 39, pp. 105–133, 1985.

MathSciNetCrossRefMATH22.

Z. Wang, A Conformal Elimination Free Algorithm for Oriented Matroid Programming,*Chinese Ann. Math.*, Ser. B, vol. 8, p. 1, 1987.

23.

D. Avis and K. Fukuda, Reverse Search for Enumeration, Research Report 92-5, GSSM, University of Tsukuba, April 1992.