A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra
 David Avis,
 Komei Fukuda
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
We present a new pivotbased algorithm which can be used with minor modification for the enumeration of the facets of the convex hull of a set of points, or for the enumeration of the vertices of an arrangement or of a convex polyhedron, in arbitrary dimension. The algorithm has the following properties:

Virtually no additional storage is required beyond the input data.

The output list produced is free of duplicates.

The algorithm is extremely simple, requires no data structures, and handles all degenerate cases.

The running time is output sensitive for nondegenerate inputs.

The algorithm is easy to parallelize efficiently.
For example, the algorithm finds thev vertices of a polyhedron inR ^{d} defined by a nondegenerate system ofn inequalities (or, dually, thev facets of the convex hull ofn points inR ^{d}, where each facet contains exactlyd given points) in timeO(ndv) andO(nd) space. Thev vertices in a simple arrangement ofn hyperplanes inR ^{d} can be found inO(n ^{2} dv) time andO(nd) space complexity. The algorithm is based on inverting finite pivot algorithms for linear programming.
 D. Avis and V. Chvátal, Notes on Bland's Pivoting Rule,Math. Programming Study., vol. 8, pp. 24–34, 1978.
 R. G. Bland, New Finite Pivoting Rules for the Simplex Method,Math. Oper. Res., vol. 2, pp. 103–107, 1977.
 D. R. Chand and S. S. Kapur, An Algorithm for Convex Polytopes,J. Assoc. Comput. Mach., vol. 17, pp. 78–86, 1970.
 B. Chazelle, An Optimal Convex Hull Algorithm and New Results on Cuttings,Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science, pp. 29–38, 1991.
 V. Chvátal,Linear Programming, Freeman, San Francisco, 1983.
 M. E. Dyer, The Complexity of Vertex Enumeration Methods,Math. Oper. Res., vol. 8, pp. 381–402, 1983.
 H. Edelsbrunner,Algorithms in Combinatorial Geometry, SpringerVerlag, New York, 1987.
 H. Edelsbrunner and L. Guibas, Topologically Sweeping an Arrangement,J. Comput. Syst. Sci., vol. 38, pp. 165–194, 1989.
 H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing Arrangements of Lines and Hyperplanes with Applications,SIAM J. Comput. Sci., vol. 15, pp. 341–363, 1986.
 K. Fukuda, Oriented Matroid Programming, Ph.D. Thesis, University of Waterloo, 1982.
 K. Fukuda and T. Matsui, On the Finiteness of the CrissCross Method,European J. Oper. Res., to appear.
 M. E. Houle, H. Imai, K. Imai, J.M. Robert, and P. Yamamoto, Orthogonal Weighted LinearL _{1} andL _{∞} Approximation and Applications, Manuscript, September 1990.
 T. H. Mattheiss and D. S. Rubin, A Survey and Comparison of Methods for Finding all Vertices of Convex Polyhedral Sets,Math. Oper. Res., vol. 5, pp. 167–185, 1980.
 T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall,The Double Description Method, Annals of Mathematical Studies, vol. 8, Princeton University Press, Princeton, NJ, 1953.
 K. Paparrizos, Pivoting Rules Directing the Simplex Method Through all Feasible Vertices of KleeMinty Examples,OPSEARCH, vol. 26, pp. 77–95, 1989.
 G. Rote, Degenerate Convex Hulls in High Dimensions Without Extra Storage,Proc. 8th Annual Symposium on Computational Geometry, ACM Press, New York, pp. 26–32, 1992.
 R. Seidel, A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions, Report 8114, Department of Computer Science, University of British Columbia, 1981.
 R. Seidel, Constructing HigherDimensional Convex Hulls at Logarithmic Cost per Face,Proc. 1986 Symposium on the Theory of Computing, pp. 404–413.
 T. Terlaky, A Convergent CrissCross Method,Math. Operationsforsch. Statist. Ser. Optim., vol. 16, pp. 683–690, 1985.
 T. Terlaky, A Finite CrissCross Method for Oriented Matroids,J. Combin. Theory Ser. B, vol. 42, pp. 319–327, 1987. CrossRef
 M. Todd, Linear and Quadratic Programming in Oriented Matroids,J. Combin. Theory Ser. B, vol. 39, pp. 105–133, 1985. CrossRef
 Z. Wang, A Conformal Elimination Free Algorithm for Oriented Matroid Programming,Chinese Ann. Math., Ser. B, vol. 8, p. 1, 1987.
 D. Avis and K. Fukuda, Reverse Search for Enumeration, Research Report 925, GSSM, University of Tsukuba, April 1992.
 Title
 A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra
 Journal

Discrete & Computational Geometry
Volume 8, Issue 1 , pp 295313
 Cover Date
 19921201
 DOI
 10.1007/BF02293050
 Print ISSN
 01795376
 Online ISSN
 14320444
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Industry Sectors
 Authors

 David Avis ^{(1)}
 Komei Fukuda ^{(2)}
 Author Affiliations

 1. School of Computer Science, McGill University, 3480 University Street, H3A 2A7, Montreal, Quebec, Canada
 2. Graduate School of Systems Management, University of Tsukuba, Otsuka, Bunkyoku, 112, Tokyo, Japan