[1]

A.V. Aho, J.E. Hopcroft and J.D. Ullman,*The Design and Analysis of Computer Algorithms* (Addison-Wesley, Reading, Mass., 1974).

[2]

M.S. Bazaraa and R.W. Langley, A dual shortest path algorithm, SIAM J. Appl. Math. 26, 3(1974)496.

[3]

R. Bellman, On a routing problem, Quart. Appl. Math. 16(1958)88.

[4]

G.B. Dantzig, All shortest routes in a graph, Theory of Graphs, Int. Symp., Rome 1966(Dunod, Paris, 1967) pp. 91–92.

[5]

E.V. Denardo and B.L. Fox, Shortest-route methods. I: Reaching, pruning, and buckets, Oper. Res. 27, 1(1979)161.

[6]

R.B. Dial, Algorithm 360: Shortest path forest with topological ordering, Commun. A.C.M. 12, 11(1969)632.

[7]

R.B. Dial, F. Glover, D. Karney and D. Klingman, A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees, Networks 9, 3(1979)215.

[8]

E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik 1(1959)269.

[9]

J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. A.C.M. 10, 2(1972)248.

[10]

M. Florian, S. Nguyen and S. Pallottino, A dual simplex algorithm for finding all shortest paths, Networks 11 (1981)367.

[11]

R.W. Floyd, Algorithm 97: Shortest path, Commun. A.C.M. 5(1962)345.

[12]

L.R. Ford, Jr., Network flow theory, Rand Corporation Report No. P-293 (1956).

[13]

G. Gallo, Reoptimization procedures in shortest path problems, Rivista di Matematica e di Scienze Economiche e Sociali 3, 1(1980)3.

[14]

G. Gallo, Updating shortest paths in large-scale networks, paper presented at the Int. Workshop on Advances in Linear Optimization Algorithms and Software, Pisa, Italy (1980).

[15]

G. Gallo and S. Pallottino, A new algorithm to find the shortest paths between all pairs of nodes, Discr. Appl. Math. 4(1982)23.

[16]

G. Gallo and S. Pallottino, Shortest path methods: A unifying approach, Mathematical Programming Study 26(1986)38.

[17]

G. Gallo, S. Pallottino, C. Ruggeri and G. Storchi, Metodi ed algoritmi per la determinazione di cammini minimi, Monografie di Software Matematico, N.29 (1984).

[18]

J. Gilsinn and C. Witzgall, A performance comparison of labeling algorithms for calculating shortest path trees, Natl. Bureau of Standards, Technical Note N.772 (1973).

[19]

F. Glover, R. Glover and D. Klingman, Computational study of an improved shortest path algorithm, Networks 14(1984)25.

[20]

F. Glover, D. Klingman and N. Phillips, A new polynomially bounded shortest path algorithm, Oper. Res. 33(1985)65.

[21]

E. Horowitz and S. Sahni,*Fundamentals of Data Structures* (Pitman, London, 1976).

[22]

T.C. Hu, Revised matrix algorithms for shortest paths, SIAM J. Appl. Math. 15(1967)207.

[23]

D.B. Johnson, Algorithms for shortest paths, Ph.D. Dissertation, Cornell University, Report No. tr-73-169 (1973).

[24]

D.B. Johnson, A note on Dijkstra's shortest path algorithm, J. A.C.M. 20, 3(1973)385.

[25]

D.B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. A.C.M. 24 1(1977)1.

[26]

E.L. Johnson, On shortest paths and sorting, Proc. 25th A.C.M. Annual Conference (1972) pp. 510–517.

[27]

A. Kershenbaum, A note on finding shortest path trees, Networks 11(1981)399.

[28]

D.E. Knuth,*The Art of Computer Programming*, Vol. 1:*Fundamental Algorithms* (Addison-Wesley, Reading, Mass., 1968).

[29]

D.E. Knuth,*The Art of Computer Programming*, Vol. 3:*Sorting and Searching* (Addison-Wesley, Reading, Mass., 1973).

[30]

E.L. Lawler,*Combinatorial Optimization: Networks and Matroids* (Holt, Rinehart and Winston, New York, 1976).

[31]

E.L. Lawler, Shortest path and network flow algorithms, Ann. Discr. Maths. 4(1979)251.

[32]

E.F. Moore, The shortest path through a maze, Proc. Int. Symp. on Theory of Switching, part 2, Harvard University Press (1959) pp. 285–292.

[33]

G.L. Nemhauser, A generalized permanent label setting algorithm for the shortest path between specified nodes, J. Math. Analysis and Appl. 38(1972)328.

[34]

S. Pallottino, Adaptation de l'algorithme de d'Esopo-Pape pour la determination de tous les chemins les plus courts: ameliorations et simplifications, CRT, University of Montreal, Publ. No. 136 (1979).

[35]

S. Pallottino, Shortest path methods: Complexity, interrelations and new propositions, Networks 14(1984)257.

[36]

U. Pape, Implementation and efficiency of Moore algorithms for the shortest route problem, Math. Progr. 7(1974)212.

[37]

U. Pape, Algorithm 562: Shortest path lengths, A.C.M. Transactions on Mathematical Software 6(1980)450.

[38]

U. Pape, Remark on algorithm 562, A.C.M. Transactions on Mathematical Software 9, 2(1983)260.

[39]

D.R. Shier and C. Witzgall. Properties of labeling methods for determining shortest path trees, J. Res. Natl. Bureau of Standards 86, 3(1981)317.

[40]

B. Simeone, Private communication, Bologna, Italy (1980).

[41]

Y. Tabourier, All shortest distances in a graph. An improvement to Dantzig's inductive algorithm, Discr. Math. 4(1973)83.

[42]

R.E. Tarjan, Complexity of combinatorial algorithms, SIAM Review 20, 3(1978)457.

[43]

R.E. Tarjan, Data structures and network algorithms, CBMS-NSF 44 (SIAM, Philadelphia, 1983).

[44]

D. Van Vliet, Improved shortest path algorithms for transport networks, Trans. Res. 12, 1(1978)7.

[45]

S. Warshall, A theorem on Boolean matrices, J. A.C.M. 9(1962)11.

[46]

J.W.J. Williams, Algorithm 232: Heapsort, Commun. A.C.M. 7(1964)347.