Annals of Operations Research

, Volume 16, Issue 1, pp 199–240

Scheduling project networks with resource constraints and time windows

  • M. Bartusch
  • R. H. Möhring
  • F. J. Radermacher
Section III Quantitative Models, Data Structuring And Information Processing

DOI: 10.1007/BF02283745

Cite this article as:
Bartusch, M., Möhring, R.H. & Radermacher, F.J. Ann Oper Res (1988) 16: 199. doi:10.1007/BF02283745


Project networks with time windows are generalizations of the well-known CPM and MPM networks that allow for the introduction of arbitrary minimal and maximal time lags between the starting and completion times of any pair of activities.

We consider the problem to schedule such networks subject to arbitrary (even time dependent) resource constraints in order to minimize an arbitrary regular performance measure (i.e. a non-decreasing function of the vector of completion times). This problem arises in many standard industrial construction or production processes and is therefore particularly suited as a background model in general purpose decision support systems.

The treatment is done by a structural approach that involves a generalization of both the disjunctive graph method in job shop scheduling [1] and the order theoretic methods for precedence constrained scheduling [18,23,24]. Besides theoretical insights into the problem structure, this approach also leads to rather powerful branch-and-bound algorithms. Computational experience with this algorithm is reported.


Scheduling project networks MPM-networks time-windows order theoretic approach to scheduling disjunctive graph method 

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1988

Authors and Affiliations

  • M. Bartusch
    • 1
  • R. H. Möhring
    • 2
  • F. J. Radermacher
    • 3
  1. 1.Lehrstuhl für Informatik und Operations ResearchUniversität PassauW.-Germany
  2. 2.Fachbereich Mathematik, TU Berlin W.-GermanyUniversität BonnGermany
  3. 3.Forschungsinstitut für Anwendungsorientierte WissensverarbeitungUlmW.-Germany

Personalised recommendations