, Volume 97, Issue 5, pp 620-624

The human lanosterol synthase gene maps to chromosome 21q22.3

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In order to contribute to the development of the transcriptional map of human chromosome 21 (HC21) we have used exon trapping to identify portions of HC21 genes. Using pools of random HC21-specific cosmids from the LL21NC02-Q library and cosmids from 21q22.3 we have identified five different coding regions with strong homology to the lanosterol synthase genes of rat and yeast. This enzyme catalyzes the cyclization of squalene-2,3-epoxide to lanosterol, which is the parental compound of all steroids in mammals. Using somatic cell hybrids and HC21 yeast artificial chromosomes (YACs) and cosmids, we mapped the human lanosterol synthase gene to 21q22.3 between markers D21S25 and 21qter. Cosmid Q7G8 from the LL21NC02-Q library and YAC 145D8 from the CEPH HC21 contig contain this human gene. We cloned a portion of the human lanosterol synthase cDNA (almost 85% of the coding region) from a brain cDNA library and determined its nucleotide sequence. The predicted human protein shows 83% identity to its rat and 40% to its yeast homolog. No obvious candidate human disease exists for lanosterol synthase deficiency and the role (if any) of triplication of this gene in the various phenotypes of trisomy 21 is unknown.