, Volume 7, Issue 1, pp 17-26

Self-stabilizing extensions for meassage-passing systems

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A self-stabilizing program eventually resumes normal behavior even if excution begins in, an abnormal initial state. In this paper, we explore the possibility of extending an arbitrary program into a self-stabilizing one. Our contributions are: (1) a formal definition of the concept of one program being aself-stabilizing extension of another; (2) a characterization of what properties may hold in such extensions; (3) a demonstration of the possibility of mechanically creating such extensions. The computtional model used is that of an asynchronous distributed message-passing system whose communication topology is an arbitrary graph. We contrast the difficulties of self-stabilization in thismodel with those of themore common shared-memory models.

Shmuel Katz received his B.A. in Mathematics and Englisch Literature from U.C.L.A., and his M.Sc. and Ph.D. in Computer Science (1976) from the Weizmann Institute in Rechovot, Israel. From 1976 to 1981 he was a research at the IBM Israel Scientific Center. Presently, he is an Associate Professor in the Computer Science Department at the Technion in Haifa, Israel. In 1977–78 he visited for a year at the University of California, Berkeley, and in 1984–85 was at the University of Texas at Austin. He has been a consultant and vistor at the MCC Software Technology Program, and in 1988–89 was a visiting scientist at the IBM Watson Research Center. His research interests include the methodology of programming, specification methods, program verification and semantics, distributed programming, data structure, and programming languages.
Kenneth J. Pery has performed research in the area of distributed computing since obtaining Masters and Doctorate degrees in Computer Science from Cornell Univesity. His current interest is in studying problems of a partical nature in a formal context. He was graduated from Princeton University in 1979 with a B.S.E. degree in Electrical Engineering and Computer Science.
The Research of this author was partially supported by Research Grant 120-749 and the Argentinian Research Fund at the Technion