, Volume 4, Issue 1, pp 75-89

Optimal patterns of growth and reproduction for perennial plants with persisting or not persisting vegetative parts

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Optimal allocation of energy to growth, reproduction and storage was considered for perennial plants differing in the proportion of vegetative structures persisting over winter and/or in the amount of resources which can be relocated to storage before abscission of some organs. It was found that for every mortality level there exists a critical proportion of persistent organs. Below this critical value it is optimal to grow without reproduction for the first years until a characteristic size is reached; afterwards, that size is maintained year after year and all extra resources are devoted to reproduction. Some storage is also necessary to maintain constant size. If the proportion of retained vegetative mass is above the critical value, the optimal strategy is gradual growth to an asymptotic size, with growth and reproduction occurring in several years following maturation. In this case real storage occurs only until maturation is reached, then storage is realized only by energy relocation from the vegetative body. Although the optimal solution changes abruptly qualitatively at a given proportion of resources saved from year to year, further growth of this proportion above the critical level brings about a greater difference between size reached at maturity and final size. The predictions of the model seem to follow the pattern of nature qualitatively.