, Volume 4, Issue 5, pp 235-243

Application of recombinant rhodostomin in studying cell adhesion

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Rhodostomin from venom ofAgkistrodon rhodostoma (also calledCalloselasma rhodostoma) contains 68 amino acid residues including 6 pairs of disulfide bonds and an arginine-glycine-aspartic acid (RGD) sequence at positions 49–51. It has been known as one of the strongest antagonists to platelet aggregation among the family termed disintegrin. In this review paper, in addition to introducing the characteristics of disintegrin and its related molecules, the advantages of using recombinant DNA technology to produce rhodostomin are described. The recombinant rhodostomin has been demonstrated to facilitate cell adhesion via interaction between the RGD motif of rhodostomin and integrins on the cell surface. This property allowed us to use the recombinant rhodostomin as an extracellular matrix to study cell adhesion and to distinguish attachment efficiency between two melanoma cell lines B16-F1 and B16-F10, the former is a low metastasis cell while the latter is a high metastasis cell. Furthermore, by using the recombinant rhodostomin as a substrate, osteoprogenitor-like cells are able to be selected and enriched within 3 days from rat bone marrow which contains a heterogeneous cell population. Finally, we show that the recombinant rhodostomin can be immobilized on beads and which serve as an affinity column to dissect cell-surface protein(s) binding to the RGD motif of rhodostomin.