, Volume 26, Issue 3, pp 189-195

Reconstructing pictures from projections: On the convergence of the ART algorithm with relaxation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The convergence of the additive and linear ART algorithm with relaxation is proved in a new way and under weaker assumptions on the sequence of the relaation parameters than in earlier works. These algorithms are iterative methods for the reconstruction of digitized pictures from one-dimesional views. A second proof using elementary matrix algebra shows the geometric convergence of the linear ART algorithm with relaxation.

Zusammenfassung

ART-Algorithmen sind iterative Methoden zur Rekonstruktion von digitalen Bildern aus ihren Projektionen. Die Konvergenz des additiven und linearen (nicht restringierten) ART-Algorithmus mit Relaxation wird unter weit schwächeren Voraussetzungen über die Relaxationsparameter als bei bisher bekannten Resultaten bewiesen. Ein anderer Beweis zeigt die geometrisch schnelle Konvergenz des linearen relaxierten ART-Algorithmus.