Skip to main content
Log in

Variational and extremum properties of homogeneous chemical kinetics. II. Minimum dissipation approaches

  • Published:
Open Systems & Information Dynamics

Abstract

We continue our work on variational and extremum approaches to homogeneous chemical kinetics of complex reaction systems far from equilibrium and consider minimum dissipation approaches in both the energy and entropy representations. We generalize the linear results of Onsager and Onsager-Machlup to nonlinear (transient and nonisothermal) situations and show that the generalization obey their general thermodynamic schemes.

With the help of an error criterion it is shown that the Onsager-Machlup linear variational scheme can be generalized to arbitrary nonlinear systems described by a set of coordinates not all of which need be independent and with dissipation quadratic with respect to rates; an outcome of this generalization is an integral principle of least entropy growth along the natural path governed by the dissipative Lagrange equations of motion and the balance constraints (in the entropy representation). The Lagrangian multipliers associated with the constraints are interpreted as the uniquenonequilibrium temperature and (negative) Planck potentials. They replace their well known equilibrium counterparts in extended expressions describing entropy flow far from equilibrium. The absolute nature of the minimum of the related power expressions is shown; this again corresponds to the dissipative Lagrange equations of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Callen, H.,Thermodynamics, Wiley, New York, 1960.

    Google Scholar 

  2. Casimir, H. G. B., Rev. Mod. Phys.17, 342 (1945).

    Article  Google Scholar 

  3. Eyring, H. and M. S. Jhon,Significant Liquid Structures, Wiley, New York, 1969.

    Google Scholar 

  4. Garcia-Colin, L. S., S. M. T. de la Selva, and E. Pina, Phys. Lett.110A, 363 (1985).

    Google Scholar 

  5. Garcia-Colin, L. S., S. M. T. de la Selva, and E. Pina, J. Chem. Phys.90, 953 (1986).

    Article  Google Scholar 

  6. Garcia-Colin, L. S., Chemically reacting systems in extended irreversible thermodynamics, inAdvances in Thermodynamics, vol. 7:Extended Thermodynamic Systems, Taylor & Francis, New York, 1992, pp. 364–385.

    Google Scholar 

  7. Giesekus, H., Constitutive models of polymer fluids: toward a unified approach, inTrends in Applications of Pure Mathematics to Mechanics, ed. by E. Kroner and K. Kirchgassner, Springer, Berlin, 1986, pp. 331–348.

    Google Scholar 

  8. Glansdorff, P., and I. Prigogine,Thermodynamic Theory of Structure Stability and Fluctuations, Wiley, New York, 1971.

    Google Scholar 

  9. Glasstone S., K. J. Laidler, and H. Eyring,Theory of Rate Processes, McGraw-Hill, New York, 1941.

    Google Scholar 

  10. Grabert, H., P. Hänggi and I. Oppenheim, Physica117A, 300 (1983).

    Google Scholar 

  11. Gyarmati, I.,Non-Equilibrium Thermodynamics, Springer, Berlin, 1970.

    Google Scholar 

  12. Hirshfelder, J. O., Ch. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York, 1954.

    Google Scholar 

  13. Jou, D., J. Casas-Vazquez, and G. Lebon, Rep. Progr. Phys.51, 1105 (1989).

    Article  Google Scholar 

  14. Keizer, J., Variational principles in nonequilibrium thermodynamics, Biosystems8, 219 (1977).

    Article  Google Scholar 

  15. Keizer, J.,Statistical Thermodynamics of Nonequilibrium Processes, Springer, New York, 1987.

    Google Scholar 

  16. Landau, L. D., and E. M. Lifshitz,Mechanics, Pergamon, Oxford, 1960.

    Google Scholar 

  17. Lavenda, B. H.,Nonequilibrium Statistical Thermodynamics, Wiley, Chichester, 1985.

    Google Scholar 

  18. Lebon, G., Extended irreversible thermodynamics of rheological materials, inAdvances in Thermodynamics, vol. 7:Extended Thermodynamic Systems, Taylor & Francis, New York, 1992, pp. 310–338.

    Google Scholar 

  19. Lengyel, S., J. Chem. Phys.88, 1617 (1988).

    Article  Google Scholar 

  20. Lengyel, S., Consistency of chemical kinetics with thermodynamics, inAdvances in Thermodynamics, vol. 6:Flow, Diffusion and Rate Processes, Taylor & Francis, New York, 1992, pp. 283–302.

    Google Scholar 

  21. Maugin, G. A., and R. Drouot, Intern. J. Engng. Sci.21, 705 (1983).

    Article  Google Scholar 

  22. Maugin, G. A., and R. Drouot, Nonequilibrium thermodynamics of solutions of macromolecules, inAdvances in Thermodynamics, vol. 7:Extended Thermodynamic Systems, Taylor & Francis, New York, 1992, pp. 53–75.

    Google Scholar 

  23. Mitura, E., S. Michalowski, and W. Kaminski, Drying Technol.6, 113 (1988).

    Google Scholar 

  24. Nettleton, R. E., J. Phys. A19, L295 (1986).

  25. Onsager, L., Phys. Rev.37, 405, ibid.38, 2265 (1931).

    Article  Google Scholar 

  26. Onsager, L., and S. Machlup, Phys. Rev.91, 1505, 1512 (1953).

    Article  Google Scholar 

  27. Pontryagin, L. S., V. A. Boltyanski, R. V. Gamkrelidze, and E. F. Mischenko,The Mathematical Theory of the Optimal Processes, Wiley, New York, 1962.

    Google Scholar 

  28. Shiner, J. S., J. Chem. Phys.87, 1089 (1987).

    Article  Google Scholar 

  29. Shiner, J. S., A Lagrangian Formulation of Chemical Reaction Dynamics and Mechano-Chemical Coupling, unpublished, 1989.

  30. Shiner, J. S., A Lagrangian formulation of chemical reaction dynamics far from equilibrium, inAdvances in Thermodynamics, vol. 6:Flow, Diffusion and Rate Processes, Taylor & Francis, New York, 1991, pp. 248–282.

    Google Scholar 

  31. Sieniutycz, S., Chem. Engng. Sci.42, 2697 (1987).

    Article  Google Scholar 

  32. Sieniutycz, S., Thermal momentum, heat inertia and a macroscopic extension of de Broglie micro-thermodynamics I. The multicomponent fluids with sourceless continuity constraints, inAdvances in Thermodynamics, vol. 3:Nonequilibrium Theory and Extremum Principles, Taylor & Francis, New York, 1990, pp. 328–368.

    Google Scholar 

  33. Sieniutycz, S.,Optimization in Process Engineering (second edition), Wydawnictwa Naukowo-Techniczne, Warsaw, 1991. (See especially pages 158–159 and Fig. 5-4 therein for the properties of the functionB, an analog of ourP.)

  34. Sieniutycz, S., and R. S. Berry, Phys. Rev. A43, 2807 (1991).

    Article  Google Scholar 

  35. Sieniutycz, S., and P. Salamon, Thermodynamics of complex systems, inAdvances in Thermodynamics, vol. 7:Extended Thermodynamic Systems, Taylor & Francis, New York, 1992, pp. 1–24.

    Google Scholar 

  36. Sieniutycz, S., and J. S. Shiner, Open Sys. Information Dyn.1, 149 (1992).

    Article  Google Scholar 

  37. Wyatt, J. L., Computer Programs in Biomedicine8, 180 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from: Institute of Chemical Engineering, Warsaw Technical University, Waryńskiego 1, 00-645 Warsaw, Poland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieniutycz, S., Shiner, J.S. Variational and extremum properties of homogeneous chemical kinetics. II. Minimum dissipation approaches. Open Syst Inf Dyn 1, 327–348 (1992). https://doi.org/10.1007/BF02228843

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02228843

Keywords

Navigation