[1]

Baksalary, J. K.,*Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors*. In*Proceedings of the Second International Tampere Conference in Statistics* (Pukkila, T. and Puntanen, S., Eds.). Department of Mathematical Sciences, University of Tampere, Tampere, 1987, pp. 113–142.

[2]

Baksalary, J. K. andKala, R.,*Relationships between some representations of the best linear unbiased estimator in the general Gauss-Markoff model*. SIAM J. Appl. Math.*35* (1978), pp. 515–520.

[3]

Baksalary, J. K. andKala, R.,*Two properties of a nonnegative definite matrix*. Bull. Acad. Polon. Sci. Sér. Sci. Math.*28* (1980), pp. 233–235.

[4]

Baksalary, J. K., Kala, R., andKłaczyński, K.,*The matrix inequality M ⩾ B* MB*. Linear Algebra Appl.*54* (1983), pp. 77–86.

[5]

Chipman, J. S.,*On least squares with insufficient observations*. J. Amer. Statist. Assoc.*59* (1964), pp. 1078–1111.

[6]

Chollet, J.,*On principal submatrices*. Linear and Multilinear Algebra*11* (1982), pp. 283–285.

[7]

Cline, R. E. andGreville, T. N. E.,*An extension of the generalized inverse of a matrix*. SIAM J. Appl. Math.*19* (1970), pp. 682–688.

[8]

Gaffke, N. andKrafft, O.,*Optimum properties of Latin square designs and a matrix inequality*. Math. Operationsforsch. Statist. Ser. Statist.*8*, (1977), pp. 345–350.

[9]

Magness, T. A. andMcGuire, J. B.,*Comparison of least squares and minimum variance estimates of regression parameters*. Ann. Math. Statist.*33* (1962), pp. 462–470.

[10]

Marcus, M.,*A remark on the preceding paper*. Linear and Multilinear Algebra*11* (1982), p. 287.

[11]

Marsaglia, G. andStyan, G. P. H.,*Rank conditions for generalized inverses of partitioned matrices*. Sankhyā Ser. A*36* (1974), pp. 437–442.

[12]

Marshall, A. W. andOlkin, I.,*Reversal of the Lyapunov, Hölder, and Minkowski inequalities and other extensions of the Kantorovich inequality*. J. Math. Anal. Appl.*8* (1964), pp. 503–514.

[13]

Marshall, A. W. andOlkin, I.,*Inequalities: Theory of majorization and its applications*. Academic Press, New York, 1979.

[14]

Marshall, A. W. andOlkin, I.,*Matrix versions of the Cauchy and Kantorovich inequalities*. Aequationes Math.*40* (1990), pp. 89–93.

[15]

Rao, C. R.,*Least squares theory using an estimated dispersion matrix and its application to measurement of signals*. In*Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, Vol. 1 (Le Cam, L. M. and Neyman, J., Eds.). University of California Press, Berkeley, CA, 1967, pp. 355–372.