[1]

O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27(122) (1973) 339–344.

[2]

D. A. Adams, A stopping criterion for polynomial root finding, Comm. ACM 10 (1967) 655–658.

[3]

G. Alefeld and J. Herzberger, On the convergence speed of some algorithms for the simultaneous approximation of polynomial roots, SIAM J. Numer. Anal. 11(2) (1974) 237–243.

[4]

M. Ben-Or and P. Tiwari, Simple algorithms for approximating all roots of a polynomial with real roots, J. Complexity 6 (1990) 417–442.

[5]

D. Bini and G. Fiorentino, A multiprecision implementation of a poly-algorithm for univariate polynomial zeros, in:*Proc. of the POSSO Workshop on Software*, eds. J. C. Faugère, J. Marchand and R. Rioboo (Paris, 1995).

[6]

W. Börsch-Supan, A-posteriori error bounds for the zeros of polynomials, Numer. Math. 5 (1963) 380–398.

[7]

D. Braess and K. P. Hadeler, Simultaneous inclusion of the zeros of a polynomial, Numer. Math. 21 (1973) 161–165.

[8]

C. Carstensen, Inclusion of the roots of a polynomial based on Gerschgorin's theorem, Numer. Math. 59 (1991) 349–360.

[9]

M. Cosnard and P. Fraigniaud, Asynchronous Durand-Kerner and Aberth polynomial root finding methods on a distributed memory multicomputer, Parallel Computing 89 (1990) 79–84.

[10]

D. K. Dunaway, Calculation of zeros of a real polynomial through factorization using Euclid's algorithm, SIAM J. Numer. Anal. 11(6) (1974) 1087–1104.

[11]

E. Durand,*Solutions Numériques des Équations Algébriques, Tome 1: Equations du Type F(X)*=0;*Racines d'un Polynôme* (Masson, Paris 1960).

[12]

L. W. Ehrlich, A modified Newton method for polynomials, Comm. ACM 10(2) (1967) 107–108.

[13]

L. Elsener, A remark on simultaneous inclusions of the zeros of a polynomial by Gerschgorin's theorem, Numer. Math. 21 (1973) 425–427.

[14]

P. Fraigniaud, Analytic and asynchronous root finding methods on a distributed memory multicomputer, Research Report LIP-IMAG (1989).

[15]

P. Fraigniaud, The Durand-Kerner's polynomials root-finding method in case of multiple roots, BIT 31 (1991) 112–123.

[16]

I. Gargantini and P. Henrici, Circular arithmetic and the determination of polynomial zeros, Numer. Math. 18 (1972) 305–320.

[17]

W. Gautschi, Questions of numerical condition related to polynomials, in:*Recent Advances in Numerical Analysis*, eds. C. de Boor and G. H. Golub (Academic Press, New York, 1978) pp. 45–72.

[18]

M. W. Green, A. J. Korsak and M. C. Pease, Simultaneous iteration towards all roots of a complex polynomial, SIAM Rev. 18 (1976) 501–502.

[19]

H. Guggenheimer, Initial approximations in Durand-Kerner's root finding method, BIT 26 (1986) 537–539.

[20]

M. Gutknecht, A-posteriori error bounds for the zeros of a polynomial, Numer. Math. 20 (1972) 139–148.

[21]

E. Hansen, M. Patrick and J. Rusnak, Some modifications of Laguerre's method, BIT 17 (1977) 409–417.

[22]

P. Henrici,*Applied and Computational Complex Analysis*, Vol. 1 (Wiley, 1974).

[23]

A. S. Householder, Generalization of an algorithm of Sebastião e Silva, Numer. Math. 16 (1971) 375–382.

[24]

A. S. Householder,*The Numerical Treatment of a Single Nonlinear Equation* (McGraw-Hill, Boston 1970).

[25]

M. Igarashi, A termination criterion for iterative methods used to find the zeros of polynomials, Math. Comp. 42 (1984) 165–171.

[26]

M. A. Jenkins and J. F. Traub, A three stage variable shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration, Numer. Math. 14 (1970) 252–263.

[27]

I. O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numer. Math. 8 (1966) 290–294.

[28]

N. Kjurkchev and K. Mahdi, Some remarks on Dvorcuk's root-finding method, BIT 34 (1994) 318–322.

[29]

D. H. Lehmer, A machine method for solving polynomial equations, J. ACM 8 (1961) 151–162.

[30]

K. Madsen and K. Reid, Fortran subroutines for finding polynomial zeros, Report HL 75/1172(C13), Computer Science and Systems Divisions, A.E.R.E. Harwell, Oxford (1975).

[31]

J. M. McNamee, A bibliography on roots of polynomials, J. Comput. Appl. Math. 47 (1993) 391–394.

[32]

J. M. McNamee, A comparison of methods for terminating polynomial iterations, J. Comput. Appl. Math. 21 (1988) 239–244.

[33]

R. G. Moiser, Root neighborhoods of a polynomial, Math. Comp. 47 (1986) 265–273.

[34]

C. A. Neff, Specified precision polynomial root isolation is in NC, in:*Proc. 31st Annual IEEE Symp. on Foundation of Computer Science* (IEEE Computer Science Press, 1990) pp. 152–162.

[35]

A. Ostrowski, On a theorem by J. L. Walsh concerning the moduli of roots of algebraic equations, Bull. Amer. Math. Soc. 47 (1941) 742–746.

[36]

V. Pan, On approximating complex polynomial zeros: modified quadtree (Weyl's) construction and improved Newton's iteration, in:*5th Annual ACM-SIAM Symposium on Discrete Algorithms*, Arlington, VA (1994).

[37]

V. Pan, Sequential and parallel complexity of approximate evaluation of polynomial zeros, Comput. Math. Appl. 14(8) (1987) 591–622.

[38]

L. Pasquini and D. Trigiante, A globally convergent method for simultaneously finding polynomial roots, Math. Comp. 44(169) (1985) 135–149.

[39]

A. Schönhage, The fundamental theorem of algebra in terms of computational complexity, Technical Report, Mathematisches Institut der Universität Tübingen (1982).

[40]

Yu. V. Sidorov, M. V. Fedoryuk and M. I. Shabunin,*Lectures on the Theory of Functions of a Complex Variable* (Mir, Moscow, 1985).

[41]

S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. 4(1) (1981) 1–36.

[42]

B. T. Smith, Error bounds for the zeros of a polynomial based upon Gerschgorin's theorem, J. ACM 17 (1970) 661–674.

[43]

G. W. Stewart, On the convergence of Sebastião e Silva's method for finding a zero of a polynomial, Math. Comp. 12 (1970) 458–460.

[44]

W. Werner, On the simultaneous determination of polynomial roots, in:*Lecture Notes in Mathematics 953* (Springer, Berlin, 1982) pp. 188–202.

[45]

J. H. Wilkinson, Practical problems arising in the solution of polynomial equations, J. Inst. Math. Appl. 8 (1971) 16–35.