Skip to main content
Log in

Solution structure of actinomycin-DNA complexes: Drug intercalation at isolated G-C sites

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The actinomycin-D-d(A1-A2-A3-G4-C5-T6-T7-T8) complex (1 drug per duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. We have assigned the exchangeable and nonexchangeable proton resonances of Act and d(A3GCT3) in the complex and identified the intermolecular proton-proton NOES that define the alignment of the antitumor agent at its binding site on duplex DNA. The molecular dynamics calculations were guided by 70 intermolecular distance constraints between Act and nucleic acid protons in the complex. The phenoxazone chromophore of Act intercalates at the (G-C)I·(G-C)II step in the d(A3GCT3) duplex with the phenoxazone ring stacking selectively with the G4I and G4II purine bases but not with C4I and C4II pyrimidine bases at the intercalation site. There is a pronounced unwinding between the A3·T6 and G4·C5 base pairs which are the next steps located in either direction from the intercalation site in the Act-d(A3GCT3) complex. The Act cyclic pentapeptide ring conformations in the complex are similar to those for free Act in the crystal except for a change in orientation of the ester linkage connecting meVal and Thr residues. The cyclic pentapeptide rings are positioned in the minor groove with the established G-C sequence specificity of binding associated with intermolecular hydrogen bonds between the Thr backbone CO and NH groups to the NH2-2 and N3 positions of guanosine, respectively. Complex formation is also stabilized by van der Waals interactions between nonpolar groups on the cyclic pentapeptide rings and the sugar residues and base pair edges lining the widened minor groove of the (A3-G4-C5-T6)I·(A3-G4-C5-T6)II binding site segment of the DNA helix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, S.C., Shafer, R.H. and Mirau, P.A. (1982)J. Am. Chem. Soc.,104, 5504–5506.

    Google Scholar 

  • Brown, S.C., Mullis, K., Levenson, C. and Shafer, R.H. (1984)Biochemistry,23, 403–408.

    Google Scholar 

  • Cerami, A., Reich, E., Ward, D.C. and Goldberg, I.H. (1967)Proc. Natl. Acad. Sci. U.S.A.,57, 1036–1042.

    Google Scholar 

  • Creighton, S., Rudolph, B., Lybrand, T., Singh, U.C., Shafer, R., Brown, S., Kollman, P., Case, D.A. and Andrea, T. (1989)J. Biomol. Struct. Dyn.,6, 929–969.

    Google Scholar 

  • Delepierre, M., van Heijenoort, C., Igolen, J., Pothier, J., LeBret, M. and Roques, B.P. (1989)J. Biomol. Struct. Dyn.,7, 557–589.

    Google Scholar 

  • Dickerson, R.E. and Drew, H.R. (1981)J. Mol. Biol.,149,761–786.

    Google Scholar 

  • Fox, K.R. and Waring, M.J. (1984)Nucl. Acids Res.,12, 9271–9285.

    Google Scholar 

  • Gao, X. and Patel, D.J. (1988)Biochemistry,27, 1744–1751.

    Google Scholar 

  • Gao, X. and Patel, D.J. (1989)Biochemistry,28, 751–762.

    Google Scholar 

  • Gao, X., Mirau, P. and Patel, D.J. (1991)J. Mal. Biol., in press.

  • Ginell, S., Lessinger, L. and Berman, H.M. (1988)Biopolymers,27, 843–864.

    Google Scholar 

  • Jain, S.C. and Sobell, H.M. (1972)J. Mol. Biol.,68, 1–20.

    Google Scholar 

  • Jones, R.L., Scott, E.V., Zon, G., Marzilli, L.G. and Wilson, W.D. (1988)Biochemistry,27, 6021–6026.

    Google Scholar 

  • Krugh, T.R. (1972)Proc. Natl. Acad. Sci. U.S.A.,69, 1911–1914.

    Google Scholar 

  • Krugh, T.R. and Chen, Y.C. (1975)Biochemistry,14, 4912–4922.

    Google Scholar 

  • Krugh, T.R. and Neely, J.W. (1973)Biochemistry,12, 4418–4425.

    Google Scholar 

  • Metzler, W.J., Wang, C., Kitchen, D., Levy, R.M. and Pardi, A. (1990)J. Mal. Biol.,214, 711–736.

    Google Scholar 

  • Muller, W. and Crothers, D.M. (1968)J. Mol. Biol.,35, 251–290.

    Google Scholar 

  • Patel, D.J. (1974a)Biochemistry,13, 2388–2396.

    Google Scholar 

  • Patel, D.J. (1974b)Biochemistry,13, 2396–2402.

    Google Scholar 

  • Patel, D.J. (1976a)Biochem. Biophys. Acta,442, 98–108.

    Google Scholar 

  • Patel, D.J. (1976b)Biopolymers,15, 533–558.

    Google Scholar 

  • Patel, D.J. and Canuel, L.L. (1977)Proc. Natl. Acad. Sci. U.S.A.,74, 2624–2628.

    Google Scholar 

  • Patel, D.J., Kozlowski, S.A., Rice, J.A., Broka, C. and Itakura, K. (1981)Proc. Natl. Acad. Sci. U.S.A.,78, 7281–7284.

    Google Scholar 

  • Petersheim, M., Mehdi, S. and Gerlt, J.A. (1984)J. Am. Chem. Soc.,106, 439–440.

    Google Scholar 

  • Reich, E. and Goldberg, I.H. (1964)Progress in Nucleic Acids Research and Molecular Biology 3, 183–234.

    Google Scholar 

  • Reid, D.G., Salisbury, S.A. and Williams, D.H. (1983)Biochemistry,22, 1377–1385.

    Google Scholar 

  • Scott, E.V., Jones, R.L., Banville, D.L., Zon, G., Marzilli, L.G. and Wilson, W.D. (1988a)Biochemistry,27, 915–923.

    Google Scholar 

  • Scott, E.V., Zon, G., Marzilli, L.G. and Wilson, W.D. (1988b)Biochemistry,27, 7940–7951.

    Google Scholar 

  • Sobell, H.M. (1973)Progress in Nucleic Acids Research and Molecular Biology,13, 153–190.

    Google Scholar 

  • Sobell, H.M. and Jain, S.C. (1972)J. Mol. Biol.,68, 21–34.

    Google Scholar 

  • Sobell, H.M., Jain, S.C. and Sakore, T.D. (1971)Nature New Biology,231, 200–205.

    Google Scholar 

  • Takusagawa, F., Dabrow, M., Neidle, S. and Berman, H.M. (1982)Nature,296, 466–469.

    Google Scholar 

  • Van de Ven, F.J. and Hilbers, C.W. (1988)Eur. J. Biochem.,178, 1–38.

    Google Scholar 

  • Van Dyke, M.W., Hertzberg, R.P. and Dervan, P.B. (1982)Proc. Natl. Acad. Sci. U.S.A.,79, 5470–5474.

    Google Scholar 

  • Wang, A.H., Ughetto, G., Quigley, G. and Rich, A. (1987)Biochemistry,26, 1152–1163.

    Google Scholar 

  • Waring, M. (1970)J. Mal. Biol.,54, 247–279.

    Google Scholar 

  • Waring, M. (1981) InThe Molecular Basis of Antibiotic Action (Eds, Gale, F. et al.) Wiley, London, pp. 314–333.

    Google Scholar 

  • Wells, R.D. and Larson, J.E. (1970)J. Mol. Biol.,49, 319–342.

    Google Scholar 

  • Wilson, W.D., Jones, R.L., Zon, G., Scott, E.V., Banville, D.M. and Marzilli, L.G. (1986)J. Am. Chem. Soc.,108, 7113–7114.

    Google Scholar 

  • Wüthrich, K. (1986)NMR of Proteins and Nucleic Acids, Wiley, New York.

    Google Scholar 

  • Zhang, X. and Patel, D.J. (1990)Biochemistry,29, 9451–9466.

    Google Scholar 

  • Zhang, X. and Patel, D.J. (1991)Biochemistry,30, 4026–4041.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor V.F. Bystrov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Chen, H. & Patel, D.J. Solution structure of actinomycin-DNA complexes: Drug intercalation at isolated G-C sites. J Biomol NMR 1, 323–347 (1991). https://doi.org/10.1007/BF02192858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02192858

Keywords

Navigation