aequationes mathematicae

, Volume 31, Issue 1, pp 202–212

Are linear algorithms always good for linear problems?

  • Arthur G. Werschulz
  • Henryk Woźniakowski
Research Papers

DOI: 10.1007/BF02188189

Cite this article as:
Werschulz, A.G. & Woźniakowski, H. Aeq. Math. (1986) 31: 202. doi:10.1007/BF02188189

Abstract

We exhibit linear problems for which every linear algorithm has infinite error, and show a (mildly) nonlinear algorithm with finite error. The error of this nonlinear algorithm can be arbitrarily small if appropriate information is used. We illustrate these examples by the inversion of a finite Laplace transform, a problem arising in remote sensing.

AMS (1980) subject classification

Primary 65R20, 68C05, 68C25Secondary 33J35, 45B05, 45L05

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • Arthur G. Werschulz
    • 1
    • 2
    • 3
    • 4
  • Henryk Woźniakowski
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Computer ScienceColumbia UniversityNew YorkUSA
  2. 2.Department of Computer ScienceColumbia UniversityNew YorkUSA
  3. 3.Division of Science and MathematicsFordham University, College at Lincoln CenterNew YorkUSA
  4. 4.Institute of InformaticsUniversity of Warsaw, PKiNWarsawPoland