Discrete & Computational Geometry

, Volume 7, Issue 1, pp 1–11

The number of different distances determined by a set of points in the Euclidean plane

Authors

  • Fan R. K. Chung
    • Bell Communications Research
  • E. Szemerédi
    • Mathematics Institute of the Hungarian Academy of Sciences
    • Department of Computer ScienceRutgers University
  • W. T. Trotter
    • Bell Communications Research
    • Department of MathematicsArizona State University
Article

DOI: 10.1007/BF02187820

Cite this article as:
Chung, F.R.K., Szemerédi, E. & Trotter, W.T. Discrete Comput Geom (1992) 7: 1. doi:10.1007/BF02187820

Abstract

In 1946 P. Erdös posed the problem of determining the minimum numberd(n) of different distances determined by a set ofn points in the Euclidean plane. Erdös provedd(n) ≥cn1/2 and conjectured thatd(n)≥cn/ √logn. If true, this inequality is best possible as is shown by the lattice points in the plane. We showd(n)≥n4/5/(logn)c.

Copyright information

© Springer-Verlag New York Inc. 1992