The complexity and construction of many faces in arrangements of lines and of segments
 Herbert Edelsbrunner,
 Leonidas J. Guibas,
 Micha Sharir
 … show all 3 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
We show that the total number of edges ofm faces of an arrangement ofn lines in the plane isO(m ^{2/3−δ } n ^{2/3+2δ }+n) for anyδ>0. The proof takes an algorithmic approach, that is, we describe an algorithm for the calculation of thesem faces and derive the upper bound from the analysis of the algorithm. The algorithm uses randomization and its expected time complexity isO(m ^{2/3−δ } n ^{2/3+2δ } logn+n logn logm). If instead of lines we have an arrangement ofn line segments, then the maximum number of edges ofm faces isO(m ^{2/3−δ } n ^{2/3+2δ }+nα (n) logm) for anyδ>0, whereα(n) is the functional inverse of Ackermann's function. We give a (randomized) algorithm that produces these faces and takes expected timeO(m ^{2/3−δ } n ^{2/3+2δ } log+nα(n) log^{2} n logm).
 Agarwal, P. K. An efficient algorithm for partitioning arrangements of lines and its applications. InProc. 5th ACM Symp. Comput. Geom., 1989, pp. 11–22.
 Aronov, B., Edelsbrunner, H., Guibas, L., Sharir, M. (1989) Improved bounds on the number of edges of many faces in arrangements of line segments. Report UIUCDCSR891527. Department of Computer Science, University of Illinois, Urbana, Illinois
 Aronov, B., and Sharir, M. Triangles in space, or: Building (and analyzing) castles in the air. InProc. 4th ACM Symp. Comput. Geom., 1988, pp. 381–391.
 Bentley, J. L., Ottmann, T. A. (1979) Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. 28: pp. 643647
 Canham, R. J. (1969) A theorem on arrangements of lines in the plane. Isreal J. Math. 7: pp. 393397
 Chazelle, B., Dobkin, D. P. (1987) Intersection of convex objects in two and three dimensions. J. Assoc. Comput. Mach. 34: pp. 127
 Clarkson, K. (1987) New applications of random sampling in computational geometry. Discrete Comput. Geom. 2: pp. 195222
 Clarkson, K., Edelsbrunner, H., Guibas, L. J., Sharir, M., and Welzl, E. Combinatorial complexity bounds for arrangements of curves and spheres.Discrete Comput. Geom., this issue, 99–160.
 Cole, R., Sharir, M., Yap, C. K. (1987) Onkhulls and related problems. SIAM J. Comput. 16: pp. 6177
 Edelsbrunner, H. (1987) Algorithms in Combinatorial Geometry. SpringerVerlag, Heidelberg
 Edelsbrunner, H., Guibas, L. J., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., Welzl, E. (1989) Implicitly representing arrangements of lines or segments. Discrete Comput. Geom. 4: pp. 433466
 Edelsbrunner, H., Guibas, L. J., and Sharir, M. The complexity of many cells in arrangements of planes and related problems.Discrete Comput. Geom., this issue, 197–216.
 Edelsbrunner, H., Guibas, L. J., Stolfi, J. (1986) Optimal point location in a monotone subdivision. SIAM J. Comput. 15: pp. 317340
 Edelsbrunner, H., O'Rourke, J., Seidel, R. (1986) Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15: pp. 341363
 Edelsbrunner, H., Sharir, M. (1990) The maximum number of ways to stabn convex nonintersecting sets in the plane is 2n − 2. Discrete Comput. Geom. 5: pp. 3542
 Edelsbrunner, H., Welzl, E. (1986) On the maximal number of edges of many faces in an arrangement. J. Combin. Theory Ser. A 41: pp. 159166
 Edelsbrunner, H., Welzl, E. (1986) Halfplanar range search in linear space andO(n 0.695) query time. Inform. Process. Lett. 23: pp. 289293
 Grünbaum, B. (1967) Convex Polytopes. Wiley, London
 Guibas, L. J., Overmars, M. H., Sharir, M. (1989) Counting and reporting intersections in arrangements of line segments. Computer Science Department, NYU
 Guibas, L. J., Sharir, M., and Sifrony, S. On the general motion planning problem with two degrees of freedom. InProc. 4th ACM Symp. Comput. Geom., 1988, pp. 289–298.
 Hart, S., Sharir, M. (1986) Nonlinearity of DavenportSchinzel sequences and of generalized path compression schemes. Combinatorica 6: pp. 151177
 Haussler, D., Welzl, E. (1987) Epsilonnets and simplex range queries. Discrete Comput. Geom. 2: pp. 127151
 Moise, E. E. (1977) Geometric Topology in Dimension 2 and 3. SpringerVerlag, New York
 O'Rourke, J. (1986) The signature of a plane curve. SIAM J. Comput. 15: pp. 3451
 Pollack, R., Sharir, M., Sifrony, S. (1988) Separating two simple polygons by a sequence of translations. Discrete Comput. Geom. 3: pp. 123136
 Preparata, F. P., Shamos, M. I. (1985) Computational Geometry—An Introduction. SpringerVerlag, New York
 Schmitt, A., Müller, H., Leister, W. Ray tracing algorithms—theory and practice. In: Earnshaw, R. A. eds. (1988) Theoretical Foundations of Computer Graphics and CAD. SpringerVerlag, Berlin, pp. 9971030
 Szemerédi, E., Trotter, W. T. (1983) Extremal problems in discrete geometry. Combinatorica 3: pp. 381392
 Wiernik, A., Sharir, M. (1988) Planar realization of nonlinear DavenportSchinzel sequences by segments. Discrete Comput. Geom. 3: pp. 1547
 Title
 The complexity and construction of many faces in arrangements of lines and of segments
 Journal

Discrete & Computational Geometry
Volume 5, Issue 1 , pp 161196
 Cover Date
 19901201
 DOI
 10.1007/BF02187784
 Print ISSN
 01795376
 Online ISSN
 14320444
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Industry Sectors
 Authors

 Herbert Edelsbrunner ^{(1)}
 Leonidas J. Guibas ^{(2)} ^{(3)}
 Micha Sharir ^{(4)} ^{(5)}
 Author Affiliations

 1. Department of Computer Science, University of Illinois at UrbanaChampaign, 61801, Urbana, Ill, USA
 2. DEC Systems Research Center, 130 Lytton Avenue Palo Alto, 94301, Ca, USA
 3. Department of Computer Science, Stanford University, 94305, Ca, USA
 4. Courant Institute of Mathematical Sciences, New York University, 10012, New York, NY, USA
 5. School of Mathematical Science, Tel Aviv University, 69978, Tel Aviv, Israel