1.

A. Aggarwal, J. S. Chang, and C. K. Yap, Minimum area circumscribing polygons, to appear in a special issue of Visual Computer: International J. of Computer Graphics. Also, NYU-Courant Institute Robotics Lab. Report No. 42, May 1985.

2.

M. Ben-Or, D. Kozen, and J. Reif, The complexity of elementary algebra and geometry, 16th STOC, 457–464, 1984.

3.

J. E. Boyce, D. P. Dobkin, III, R. L. Drysdale, and L J. Guibas, Finding extremal polygons, 14th STOC, 282–289, 1982.

4.

G. D. Chakerian, and L. H. Lange, Geometric extremum problems, Math. Mag. 44 (1971) 57–69.

MathSciNetCrossRefMATH5.

J. S. Chang, and C. K. Yap, A polynomial solution to potato-peeling and other polygon inclusion and enclosure problems, 25th FOCS, 408–416, May 1984.

6.

B. Chazelle, R. L. Drysdale, and D. T. Lee, Computing the Largest Empty Rectangle, Proc. of the Symposium on Theoretic Aspects of Comp. Sci., Paris, April, 1984.

7.

A. DePano, and A. Aggarwal, Finding restricted*K*-envelopes for Convex Polygons, Proc. of the 22nd Allerton Conference on Comm. Control and Computing, 1984.

8.

A. Depano, Approximations of Polygons and Polyhedra: Potentials for Research, Manuscript, 1984.

9.

D. P. Dobkin and L. Snyder, On a general method for maximizing among certain geometric problems, 20th FOCS, 9–17, 1979.

10.

D. Dori and M. Ben-Bassat, Circumscribing a convex polygon by a polygon of fewer sides with minimal area addition, Computer Vision, Graphics and Image Processing 24 (1983) 131–159.

CrossRefMATH11.

J. E. Goodman, On the largest convex polygon contained in a non-convex

*n*-gon, or How to peel a potato, Geometriae Dedicata 11 (1981) 99–106.

MathSciNetCrossRefMATH12.

V. Klee and M. C. Laskowski, Finding the smallest triangles containing a given convex polygon, J. Algorithms, 457–464, to appear.

13.

D. Kozen and C. K. Yap, Algebraic cell decomposition in NC, 26th FOCS, 1985.

14.

A. M. Lopshits, Computation of Areas of Oriented Figures, DC Heath, 1963.

15.

M. McKenna, J. O'Rourke, and S. Suri, Finding the Largest Rectangle in an Orthogonal Polygon, Tech. Report JHU/EECS-85/09, Dept. of Elec. Eng. and Comp. Sci., The Johns Hopkins University, 1985.

16.

J. O'Rourke, A. Aggarwal, S. Maddila, and M. Baldwin, An Optimal Algorithm for Finding Minimal Enclosing Triangles, Technical Report JHU/EECS-84/08, Dept. of Elec. Eng. and Comp. Sci., The Johns Hopkins University, May 1984.

17.

J. O'Rourke, Counterexamples to a Minimal Circumscription Algorithm, Manuscript, June 1984.

18.

J. O'Rourke, Finding Minimal Enclosing Boxes, Technical Report, Dept. of Elec. Eng. and Comp. Sci., The Johns Hopkins University, 1984.

19.

M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, 16th STOC, 144–153, 1984.

20.

G. T. Toussaint, Pattern Recognition and geometrical complexity, 5th International Conf. Pattern Recognition, 1324–1347 1979.

21.

T. Woo, The Convex Skull Problem, Manuscript, 1983.

22.

D. Wood and C. K. Yap, Computing a Convex Skull of an Orthogonal Polygon, Proc. of the Symposium on Computational Geometry, Baltimore, Maryland, 311–316, June, 1985.