, Volume 35, Issue 1, pp 235–260

Estimating denitrification in North Atlantic continental shelf sediments

  • Sybil P. Seitzinger
  • Anne E. Giblin

DOI: 10.1007/BF02179829

Cite this article as:
Seitzinger, S.P. & Giblin, A.E. Biogeochemistry (1996) 35: 235. doi:10.1007/BF02179829


A model of coupled nitrification/denitrification was developed for continental shelf sediments to estimate the spatial distribution of denitrification throughout shelf regions in the North Atlantic basin. Using data from a wide range of continental shelf regions, we found a linear relationship between denitrification and sediment oxygen uptake. This relationship was applied to specific continental shelf regions by combining it with a second regression relating sediment oxygen uptake to primary production in the overlying water. The combined equation was: denitrification (mmol N m−2 d−1)=0.019* phytoplankton production (mmol C m−2 d−1). This relationship suggests that approximately 13% of the N incorporated into phytoplankton in shelf waters is eventually denitrified in the sediments via coupled nitrification/denitrification, assuming a C:N ratio of 6.625:1 for phytoplankton. The model calculated denitrification rates compare favorably with rates reported for several shelf regions in the North Atlantic.

The model-predicted average denitrification rate for continental shelf sediments in the North Atlantic Basin is 0.69 mmol N m− 2 d−1. Denitrification rates (per unit area) predicted by the model are highest for the continental shelf region in the western North Atlantic between Cape Hatteras and South Florida and lowest for Hudson Bay, the Baffin Island region, and Greenland. Within latitudinal belts, average denitrification rates were lowest in the high latitudes, intermediate in the tropics and highest in the mid-latitudes. Although denitrification rates per unit area are lowest in the high latitudes, the total N removal by denitrification (53 × 1010 mol N y−1) is similar to that in the mid-latitudes (60 × 1010 mol N y−1) due to the large area of continental shelf in the high latitudes. The Gulf of St. Lawrence/Grand Banks area and the North Sea are responsible for seventy-five percent of the denitrification in the high latitude region. N removal by denitrification in the western North Atlantic (96 × 1010 mol N y−1) is two times greater than in the eastern North Atlantic (47 × 1010 mol N y−1). This is primarily due to differences in the area of continental shelf in the two regions, as the average denitrification rate per unit area is similar in the western and eastern North Atlantic.

We calculate that a total of 143 × 1010 mol N y−1 is removed via coupled nitrification/denitrification on the North Atlantic continental shelf. This estimate is expected to underestimate total sediment denitrification because it does not include direct denitrification of nitrate from the overlying water. The rate of coupled nitrification/denitrification calculated is greater than the nitrogen inputs from atmospheric deposition and river sources combined, and suggests that onwelling of nutrient rich slope water is a major source of N for denitrification in shelf regions. For the two regions where N inputs to a shelf region from onwelling have been measured, onwelling appears to be able to balance the denitrification loss.

Key words

benthic mineralization continental shelf denitrification global N cycle nitrogen North Atlantic nutrients onwelling phytoplankton sediments 

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Sybil P. Seitzinger
    • 1
  • Anne E. Giblin
    • 2
  1. 1.Institute of Marine and Coastal Sciences, Rutgers/NOAA CMER ProgramRutgers UniversityNew Brunswick
  2. 2.Ecosystems CenterMarine Biological LaboratoryWoods Hole

Personalised recommendations