, Volume 250, Issue 3, pp 241-251

Identification of two new genes,mukE andmukF, involved in chromosome partitioning inEscherichia coli

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We have previously reported that the MukB protein is essential for chromosome partitioning inEscherichia coli and thatmukB mutants produce anucleate cells and are temperature-sensitive for colony formation. ThemukB gene maps at 21 min on theE. coli chromosome andsmtA-mukF-mukE-mukB genes might comprise an operon, which is transcribed in a clockwise direction. Here, we report thatmukF andmukE null mutants are both temperature-sensitive for colony formation and produce anucleate cells even at the permissive temperature. These phenotypes are the same as those observed in themukB null mutant. The primary sequence of MukF includes a leucine zipper structure and an acidic domain. Mutational analysis revealed that both are required for MukF function. When the MukF protein was overproduced in the wild-type strain, anucleate cells were produced. In contrast, overproduction of either MukE or MukB did not cause the defect. In null mutants for themukF, mukE, andmukB genes, the synchronous initiation of chromosome replication was not affected. The mini-F plasmid was as stably maintained in these mutants as in the wild-type strain. These results indicate that the MukF, MukE, and MukB proteins are involved in the chromosome partitioning steps, but are not required for mini-F plasmid partitioning.

Communicated by M. Sekiguchi