Journal of Mathematical Sciences

, Volume 95, Issue 3, pp 2185-2191

First online:

Estimates of the levy constant for\(\sqrt p \) and class number one criterion for ℚ(\(\sqrt p \))

  • E. P. Golubeva

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Let p ≡ = 3 (mod 4) be a prime, let ℓ(\(\sqrt p \)) be the length of the period of the expansion of\(\sqrt p \) into a continued fraction, and let h(4p) be the class number of the field ℚ(\(\sqrt p \)). Our main result is as follows. For p > 91, h(4p)=1 if and only if ℓ(\(\sqrt p \)) > 0.56\(\sqrt p \)L4p(1), where L4p(1) is the corresponding Dirichlet series. The proof is based on studying linear relations between convergents of the expansion of\(\sqrt p \) into a continued fraction. Bibliography: 13 titles.