Skip to main content
Log in

Stimulation of hematopoiesis and antibacterial resistance by interleukin-1

  • Published:
Biotherapy

Summary

The beneficial effects of IL-1 and other cytokines on hematopoiesis and on resistance to infection are profound. IL-1 stimulates proliferation of bone marrow cells in normal mice and potentiates the recovery of peripheral blood neutrophils in mice with drug-induced neutropenia. Prophylactic cytokine administration provides an elevated level of natural resistance to infections which is correlated with increased numbers of phagocytic leukocytes. These studies suggest that IL-1 has potential clinical application as a therapy to limit bone marrow dysfunction and immuno-suppression and to augment hematopoiesis and natural immunity. Further research will continue to elucidate the mechanisms whereby interleukins and colony-stimulating factors act, and interact, to promote restoration of leukocyte production and to enhance host resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metcalf D. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 1986; 67: 257–67.

    Google Scholar 

  2. ampschmidt RF. Infection, inflammation, and interleukin 1 (IL-1). Lymphokine Res 1983; 2: 97–102.

    PubMed  Google Scholar 

  3. Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 1984; 311: 1413–8.

    PubMed  Google Scholar 

  4. Hamblin AS. Lymphokines and interleukins. Immunology 1988; Suppl. 1: 39–41.

  5. Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, Dinarello CA. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 1984; 81: 7907–11.

    PubMed  Google Scholar 

  6. Oppenheim JJ, Kovacs EJ, Matsushima K, Durum SK. There is more than one interluekin 1. Immunol Today 1986; 7: 45–56.

    Google Scholar 

  7. Hopp TP, Dower SK, March CJ. The molecular forms of interleukin-1. Immunol Res 1986; 5: 271–80.

    PubMed  Google Scholar 

  8. Mochizuki DY, Eisenman JR, Conlon PJ, Larsen AD, Tushinski RJ. Interleukin 1 regulates hematopoietic activity, a role previously ascribed to hemopoietin 1. Proc Natl Acad Sci USA 1987; 84: 5267–71.

    PubMed  Google Scholar 

  9. Zhou Y-Q, Stanley ER, Clark SC, Hatzfield JA, Levesque J-P, Federici C, Watt SM, Hatzfield A. Interleukin-3 and interleukin-la allow earlier bone marrow progenitors to respond to human colony-stimulating factor 1. Blood 1988; 72: 1870–4.

    PubMed  Google Scholar 

  10. Benjamin WR, Tare NS, Hayes TJ, Becker JM, Anderson TD. Regulation of hemopoiesis in myelosuppressed mice by human recombinant IL-1. J Immunol 1989; 142: 792–9.

    PubMed  Google Scholar 

  11. McIntyre KW, Unowsky J, DeLorenzo W, Benjamin W. Enhancement of antibacterial resistance of neutropenic, bone marrow-suppressed mice by interleukin-la. Infect Immun 1989; 57: 48–57.

    PubMed  Google Scholar 

  12. Moore MAS, Warren DJ. Synergy of interleukin 1 and granulocyte colony-stimulating factor:In vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice. Proc Natl Acad Sci USA 1987; 84: 7134–8.

    PubMed  Google Scholar 

  13. McAdam KPWJ, Li J, Knowles J, Foss NT, Dinarello CA, Rosenwasser LJ, Selinger MJ, Kaplan MM, Goodman R, Herbert PN, Bausserman LL, Nadler LM. The biology of SAA: identification of the inducer,in vitro synthesis, and heterogeneity demonstrated with monoclonal antibodies. Ann NY Acad Sci 1982; 389: 126–36.

    PubMed  Google Scholar 

  14. Sipe JD, Vogel SN, Sztein MB, Skinner M, Cohen AS. The role of interleukin 1 in acute phase serum amyloid A (SAA) and serum amyloid P (SAP) biosynthesis. Ann NY Acad Sci 1982; 389: 137–50.

    PubMed  Google Scholar 

  15. Mortensen RF, Shapiro J, Lin B-F, Douches S, Neta R. Interaction of recombinant IL-1 and recombinant tumor necrosis factor in the induction of mouse acute phase proteins. J Immunol 1988; 140: 2260–6.

    PubMed  Google Scholar 

  16. Prowse KR, Baumann H. Interleukin-1 and interleukin-6 stimulate acute-phase protein production in primary mouse hepatocytes. J Leuk Biol 1989; 45: 55–61.

    Google Scholar 

  17. Hill MR, Stith RD, McCallum RE. Interleukin 1: a regulatory role in glucocorticoid-regulated hepatic metabolism. J Immunol 1986; 137: 858–62.

    PubMed  Google Scholar 

  18. Shedlofsky SI, Swim AT, Robinson JM, Gallicchio VS, Cohne DA, McClain CJ. Interleukin-1 depresses cytochrome P450 levels in mice. Life Sci 1987; 40: 2331–60.

    PubMed  Google Scholar 

  19. Neta R, Sztein MB, Oppenheim JJ, Gillis S, Douches SD. The in vivo effects of interleukin 1. I. Bone marrow cells are induced to cycle after administration of interleukin 1. J Immunol 1987; 139: 1861–6.

    PubMed  Google Scholar 

  20. Vogel SN, Douches SD, Kaufman EN, Neta R. Induction of colony stimulating factor in vivo by recombinant interleukin la and recombinant tumor necrosis factor α. J Immunol 1987; 138: 2143–8.

    PubMed  Google Scholar 

  21. Neta R, Vogel SN, Oppenheim JJ, Douches SD. Cytokines in radioprotection. Comparison of the radioprotective effects of IL-1 to IL-2, GM-CSF and IFN. Lymphokine Res 1986; 5: S105-S110.

    PubMed  Google Scholar 

  22. Morrissey P, Charrier K, Bressler L, Alpert A. The influence of IL-1 treatment on the reconstitution of the hemopoietic and immune systems after sublethal radiation. J Immunol 1988; 140: 4204–10.

    PubMed  Google Scholar 

  23. Gallicchio VS. Accelerated recovery of hematopoiesis following sub-lethal whole body irradiation with recombinant murine interleukin-1 (IL-1). J Leuk Biol 1988; 43: 211–5.

    Google Scholar 

  24. Neta R, Oppenheim JJ, Douches SD. Interdependence of the radioprotective effects of human recombinant interleukin 1α, tumor necrosis factor a, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor. J Immunol 1988; 140: 108–11.

    PubMed  Google Scholar 

  25. Castelli MP, Black PL, Schneider M, Pennington R, Abe F, Talmadge JE. Protective, restorative, and therapeutic properties of recombinant human IL 1 in rodent models. J Immunol 1988; 140: 3820–37.

    Google Scholar 

  26. Pizzo PA, Young RD. Infections in the cancer patient. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology. Philadelphia: J. B. Lippincott, 1985; pp. 1963–98.

    Google Scholar 

  27. Tutschka PJ. Infections and immunodeficiency in bone marrow transplantation. Pediatr Infect Dis J 1988; 7: S22-S29.

    PubMed  Google Scholar 

  28. Bodey GP, Buckley M, Sathe YS, Freireich E. Quantitative relationship between circulating leukocytes and infections in patients with acute leukemia. Ann Intern Med 1966; 64: 328–40.

    PubMed  Google Scholar 

  29. Bodey GP. Infections in cancer patients. Cancer Treat Rev 1975; 2: 89–128.

    PubMed  Google Scholar 

  30. Hoogeterp JJ, Mattie H, Krul AM, van Furth R. Quantitative effect of granulocytes on antibiotic treatment of experimental staphylococcal infection. Antimicrob Agents Chemother 1987; 31: 930–4.

    PubMed  Google Scholar 

  31. Czuprynski CJ, Brown JF. Recombinant murine interleukin-1α enhancement of nonspecific antibacterial resistance. Infect Immun 1987; 55: 2061–5.

    PubMed  Google Scholar 

  32. Ozaki Y, Ohashi T, Minami A, Nakamura S-I. Enhanced resistance of mice to bacterial infection by recombinant human interleukin-la. Infect Immun 1987; 55: 1436–40.

    PubMed  Google Scholar 

  33. Czuprynski CJ, Brown JF, Young KM, Cooley AJ, Kurtz RS. Effects of murine recombinant interleukin la on the host response to bacterial infection. J Immunol 1988; 140: 962–8.

    PubMed  Google Scholar 

  34. Czuprynski CJ, Brown JF. Purified human and recombinant murine interleukin-1α induced accumulation of inflammatory peritoneal neutrophils and mononuclear phagocytes: possible contributions to antibacterial resistance. Microb Pathogen 1987; 3: 377–86.

    Google Scholar 

  35. van der Meer JWM, Barza M, Wolff SM, Dinarello CA. A low dose of recombinant interleukin I protects granulocytopenic mice from lethal Gram-negative infection. Proc Natl Acad Sci USA 1988; 85: 1620–23.

    PubMed  Google Scholar 

  36. Gladue R, Girard A, Newborg M. Enhanced antibacterial resistance in neutropenic mice treated with human recombinant interleukin-I beta. Agents Actions 1988; 24: 130–6.

    PubMed  Google Scholar 

  37. Bullen JJ. The significance of iron in infection. Rev Infect Dis 1981; 3: 1127–38.

    PubMed  Google Scholar 

  38. Gordeuk VR, Prithviraj P, Dolinar T, Brittenham GM. Interleukin 1 administration in mice produces hypoferremia despite neutropenia. J Clin Invest 1988; 82: 1934–8.

    PubMed  Google Scholar 

  39. Weisbart RH, Golde DW, Clark SC, Wong GG, Gasson JC. Human granulocyte-macrophage colony-stimulating factor is a neutrophil activator. Nature 1985; 314: 361–3.

    PubMed  Google Scholar 

  40. Fleishmann J, Golde DW, Weisbart RH, Gasson JC. Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils. Blood 1986; 68: 708–11.

    PubMed  Google Scholar 

  41. Groopman JE, Mitsuyasu RT, DeLeo MJ, Oette DH, Golde DW. Effect of recombinant human granulocyte macrophage colony-stimulating factor on myelopoiesis in the acquired immunodeficiency syndrome. N Engl J Med 1987; 317: 593–8.

    PubMed  Google Scholar 

  42. Baldwin GC, Gasson JC, Quan SG, Fleishmann J, Weisbart R, Oette D, Mitsuyasu RT, Golde DW. Granulocyte macrophage colony-stimulating factor enhances neutrophil function in acquired immunodeficiency syndrome patients. Proc Natl Sci USA 1988; 85: 2763–6.

    Google Scholar 

  43. Metcalf D, Begley CG, Williamson DJ, Nice EC, DeLamarter J, Mermod J-J, Thatcher D, Schmidt A. Hemopoietic responses in mice injected with purified recombinant murine GM-CSF. Exp Hematol 1987; 15: 1–9.

    PubMed  Google Scholar 

  44. Fletcher MP, Gasson JC. Enhancement of neutrophil function by granulocyte-macrophage colony-stimulating factor involves recruitment of a less responsive subpopulation. Blood 1988; 71: 652–8.

    PubMed  Google Scholar 

  45. Matsumoto M, Matsubara S, Matsuno T, Tamura M, Hattori K, Nomura H, Ono M, Yokota T. Protective effect of human granulocyte colony-stimulating factor on microbial infection in neutropenic mice. Infect Immun 1987; 55: 2715–20.

    PubMed  Google Scholar 

  46. Nissen C, Tichelli A, Gratwohl A, Speck B, Milne A, Gordon-Smith EC, Schaedelin J. Failure of recombinant human granulocyte-macrophage colony-stimulating factor therapy in aplastic anemia patients with very severe neutropenia. Blood 1988; 72: 2045–7.

    PubMed  Google Scholar 

  47. Jakubowski AA, Souza L, Kelly F, Fain K, Budman D, Clarkson B, Bonilla MA, Moore MAS, Gabrilove J. Effects of human granulocyte colony-stimulating factor in a patient with idiopathic neutropenia. N Engl J Med 1989; 320: 38–42.

    PubMed  Google Scholar 

  48. Bevilacqua M, Pober J, Wheeler M, Mendrick D, Cotran R, Gimbrone MJr. Interleukin-1 acts on cultured endothelial cells to increase the adhesion of polymorphonuclear leukocytes, monocytes and related leukocyte cell lines. J Clin Invest 1985; 76: 2003–11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntyre, K.W., Unowsky, J., DeLorenzo, W. et al. Stimulation of hematopoiesis and antibacterial resistance by interleukin-1. Biotherapy 1, 319–325 (1989). https://doi.org/10.1007/BF02171008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02171008

Keywords

Navigation