Skip to main content
Log in

The ecology of antibiotic production

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Over the last 40 years, there has been a steady supply of novel, useful antibiotics produced by microbes isolated from soil and other natural environments. The increased efficiency of screening procedures in the last decade has played a major part in maintaining this supply. However, the selection and sampling of natural environments are still essentially random processes. The main reasons for this are an almost total lack of knowledge of the significance of antibiotics in nature, deficiencies in the taxonomy of antibiotic-producing microbes and its application, and lack of information about the distribution and ecology of known or potential antibiotic producers. The origins of these problems are discussed and some possible solutions are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anke T, Hecht HJ, Schramm G, Steglich W (1979) Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic fromOudemansiella mucida (Schrader ex Fr.) Hoehnel (Agaricales). J Antibiot 32:1112–1117

    PubMed  Google Scholar 

  2. Anek T, Kupke J, Schramm G, Steglich W (1980) Scorodonin, a new antibacterial and antifungal metabolite fromMarasmius scorodonius (Fr.). Fr J Antibiot 33:463–467

    Google Scholar 

  3. Baker KF (1980) Microbial antagonism—the potential for biological control. In: Ellwood DC, Hedger JH, Latham MJ, Lynch JM, Slater JH (eds) Contemporary microbial ecology, Academic Press, London and New York, pp 327–347

    Google Scholar 

  4. Berdy J (1980) Recent advances in and prospects of antibiotic research. Process Biochem 15:28–36

    Google Scholar 

  5. Brian PW (1957) The ecological significance of antibiotic production. In: Williams REC, Spicer CC (eds) (1957) Microbial ecology, Cambridge University Press, Cambridge, pp 168–188

    Google Scholar 

  6. Cassidy PJ (1982) Novel naturally occurringβ-lactam antibiotics—a review. Dev Indust Microbiol 22:181–209

    Google Scholar 

  7. Chet I, Baker R (1980) Induction of suppressiveness toRhizoctonia solani in soil. Phytopathology 70:994–998

    Google Scholar 

  8. Demain AL (1981) Applied microbiology: a personal view. In: Norris JR, Richmond MH (eds) Essays in applied microbiology, John Wiley, New York and Chichester, pp 1/1–1/31

    Google Scholar 

  9. Gottlieb D (1976) The production and role of antibiotics in soil. J Antibiot 29:987–1000

    PubMed  Google Scholar 

  10. Gray TRG, Williams ST (1971) Microbial productivity in soil. In: Hughes DE, Rose AH (eds) Microbes and biological productivity, Cambridge University Press, Cambridge, pp 255–286

    Google Scholar 

  11. Hopwood DA (1981) Genetic studies of antibiotics and other secondary metabolites. In: Glover SW, Hopwood DA (eds) Genetics as a tool in microbiology, Cambridge University Press, Cambridge, pp 187–218

    Google Scholar 

  12. Horan AC, Brodsky BC (1982) A novel antibiotic-producingActinomadura, Actinomadura kijaniata sp.nov. Int J Syst Bacteriol 32:195–200

    Google Scholar 

  13. Hotta K, Okami Y, Umezawa H (1980) An actinomycete isolated from a marine environment. II. Possible involvement of plasmid in istamycin production. J Antibiot 33:1510–1514

    PubMed  Google Scholar 

  14. Howell CR, Stipanovic RD (1979) Control ofRhizoctonia solani in cotton seedlings withPseudonomas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482

    Google Scholar 

  15. Hsu SC, Lockwood JL (1975) Powdered chitin as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    PubMed  Google Scholar 

  16. Imada A, Kitano K, Kintaka K, Muroi M, Asai M (1981) Sulfazecin and isosulfazecin, novelβ-lactam antibiotics of bacterial origin. Nature 289:590–591

    PubMed  Google Scholar 

  17. Iwasaki A, Itoh H, Mori T (1981)Streptomyces annanensis sp. nov. Int J Syst Bacteriol 31:280–284

    Google Scholar 

  18. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    Google Scholar 

  19. Katz E, Demain AL (1977) The peptide antibiotics ofBacillus: chemistry, biogenesis and possible functions. Bacteriol Rev 41:449–474

    PubMed  Google Scholar 

  20. Küster E, Williams ST (1964) Selection of media for isolation of streptomycetes. Nature:202, 928–929

    PubMed  Google Scholar 

  21. Martin JE, Demain AL (1980) Control of antibiotic synthesis. Microbial Rev 44:230–251

    Google Scholar 

  22. Ouf MF, Mahmoud SAZ, Abdel-Nasser M (1981) Effect of inoculation with antagonistic microorganisms on severity ofFusarium wilt on tomato and water melon. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg II 136:341–343

    Google Scholar 

  23. Papavizas GC, Lumsden RD (1980) Biological control of soil-bome fungal propagules. Ann Rev Phytopathol 18:389–413

    Google Scholar 

  24. Rothrock CS, Gottlieb D (1981) Importance of antibiotic production in antagonism of selectedStreptomyces species to two soil-borne plant pathogens. J Antibiot 34:830–835

    PubMed  Google Scholar 

  25. Satei S, Muto N, Hayashi M, Fujii T, Otani M (1980) Mycinamicins, new macrolide antibiotics. I. Taxonomy, production, isolation, characterization and properties. J Antibiot 33:364–376

    PubMed  Google Scholar 

  26. Scher FM, Baker R (1980) Mechanisms of biological control in aFusarium-suppressive soil. Phytopathology 70:412–417

    Google Scholar 

  27. Shomura T, Kojima M, Yoshida J, Ito M, Amano S, Totsugawa K, Niwa T, Inoyue S, Ito T, Niida T (1980) Studies on a new amino glycoside antibiotic dactimicin. 1. Producing organism and fermentation. J Antibiot 33:924–930

    PubMed  Google Scholar 

  28. Sing PJ, Mehrotra RS (1980) Biological control ofRhizoctonia bataticola on grain by coating seed withBacillus andStreptomyces species, and their influence on plant growth. Pl Soil 56:475–483

    Google Scholar 

  29. Smiley RW (1978) Antagonists ofGaeumannomyces graminis from the rhizosphere of wheat in soils fertilised with ammonium—or nitrate—nitrogen. Soil Biol Biochem 10:169–174

    Google Scholar 

  30. Smiley RW (1978) Colonization of wheat roots byGaeumannomyces graminis inhibited by specific soils, micro-organisms and ammonium-nitrogen. Soil Biol Biochem 10:175–179

    Google Scholar 

  31. Sneath PHA (1980) BASIC program for the most diagnostic properties of groups from an identification matrix of percent positive characters. Computers and Geosciences 6:21–26

    Google Scholar 

  32. Soulides DA (1964) Antibiotics in soils. VI. Determination of microquantities of antibiotics in soil. Soil Sci 97:286–289

    Google Scholar 

  33. Soulides DA (1965) Antibiotics in soils. VII. Production of streptomycin and tetracyclines in soil. Soil Sci 100:200–206

    Google Scholar 

  34. Soulides DA, Pinck LA, Allison FE (1961) Antibiotics in soils. III. Further studies on release of antibiotics from clays. Soil Sci 92:90–93

    Google Scholar 

  35. Sykes RB, Cimarusti CM, Bonner DP, Bush K, Floyd DM, Georgopapadakou NH, Koster WH, Liu WC, Parker WL, Principe PA, Rathnum ML, Slusarchyk WA, Trejo WH, Wells JS (1981) Monocyclicβ-lactam antibiotics produced by bacteria. Nature 291:489–491

    PubMed  Google Scholar 

  36. Torikata A, Enokita R, Okazaki T, Nakajima M, Iwado S, Haneishi T, Arai M (1983) Mycoplanecins, novel antimycobacterial antibiotics fromActinoplanes awajinensis subsp.mycoplanecinus subsp. nov. I. Taxonomy of producing organism and fermentation. J Antibiot 36:957–960

    PubMed  Google Scholar 

  37. Trejo WH (1970) An evaluation of some concepts and criteria used in the speciation of streptomycetes. Trans New York Acad Sci 32:989–997

    Google Scholar 

  38. Vickers JC, Williams ST, Ross GW (1985) A taxonomic approach to selective isolation of streptomycetes from soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff (eds) Biological, biochemical, and biomedical aspects of actinomycetes. Academic Press, Orlando, pp 553–561

    Google Scholar 

  39. Waksman SA (1956) The role of antibiotics in natural processes. Giorn Microbiol 2:1–14

    Google Scholar 

  40. Weller DM (1983) Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology 73:1548–1553

    Google Scholar 

  41. Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469

    Google Scholar 

  42. Williams ST (1982) Are antibiotics produced in soil? Pedobiologia 23:427–435

    Google Scholar 

  43. Williams ST (1985) Oligotrophy in soil—fact or fiction? In: Fletcher M, Floodgate GD (eds) Bacteria in their natural environments. Academic Press, London, pp 81–110

    Google Scholar 

  44. Williams ST, Khan MR (1974) Antibiotics—a soil microbiologist's viewpoint. Post Hig I Med Dows 28:395–408

    Google Scholar 

  45. Williams ST, Wellington EMH (1982) Principles and problems of selective isolation of microbes. In: Bu'lock JD, Nisbet LJ, Winstanley DJ (eds) Bioactive microbial products: search and discovery. Academic Press, London, pp 9–26

    Google Scholar 

  46. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification ofStreptomyces and related genera. J Gen Microbiol 129:1743–1813

    PubMed  Google Scholar 

  47. Williams ST, Goodfellow M, Wellington EMH, Vickers JC, Alderson G, Sneath PHA, Sackin MJ, Mortimer AM (1983) A probability matrix for identification of some streptomycetes. J Gen Microbiol 129:1815–1830

    PubMed  Google Scholar 

  48. Williams ST, Goodfellow M, Vickers JC (1984) New microbes from old habitats? In: Kelly DP, Carr NG (eds) The microbe 1984. Part II. Prokaryotes and eukaryotes, Cambridge University Press, Cambridge, pp 219–256

    Google Scholar 

  49. Witkamp M, Starkey RL (1973) Some factors affecting the determination of antibiotics in soil. Soil Sci 115:376–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, S.T., Vickers, J.C. The ecology of antibiotic production. Microb Ecol 12, 43–52 (1986). https://doi.org/10.1007/BF02153221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02153221

Keywords

Navigation