, Volume 86, Issue 3, pp 321-331

Effect of soil moisture and phosphate level on root hair growth of corn roots

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Root hairs have been shown to enhance P uptake by plants growing in low P soil. Little is known of the factors controlling root hair growth. The objective of this study was to investigate the influence of soil moisture and P level on root hair growth of corn (Zea mays L.). The effect of volumetric soil moistures of 22% (M0), 27% (M1), and 32% (M2) and soil (Raub silt loam, Aquic Argiudoll) P levels of, 0.81 (P0), 12.1 (P1), 21.6 (P2), 48.7 (P3), and 203.3 (P4) μmol P L−1 initially in the soil solution, on shoot and root growth, P uptake, and root hair growth of corn was studied in a series of pot experiments in a controlled climate chamber. Root hair growth was affected more by soil moisture than soil P. The percentage of total root length with root hairs and the density and length of root hairs on the root sections having root hairs all increased as soil moisture was reduced from M2 to M0. No relationship was found between root hair length and soil P. Density of root hairs, however, was found to decrease with an increase in soil P. No correlation was found between root hair growth parameters and plant P content, further suggesting P plays a secondary role to moisture in regulating root hair growth in soils. The increase in root hair growth appears to be a response by the plant to stress as yield and P uptake by corn grown at M0 were only 0.47 to 0.82, and 0.34 to 0.74, respectively, of that measured at M1 across the five soil P levels. The increase in root hair growth at M0, which represents an increase of 2.76 to 4.03 in root surface area, could offset, in part, the reduced rate of root growth, which was the primary reason for reduced P uptake under limited soil moisture conditions.

Journal Paper No. 10,066 Purdue Univ. Agric. Exp. Stn., W. Lafayette, IN 47907. Contribution from the Dep. of Agron. This paper was supported in part by a grant from the Tennessee Valley Authority.