, Volume 51, Issue 5, pp 482-497

Population genetic structure and mating system evolution in freshwater pulmonates

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Freshwater gastropods (Basommatophora and Prosobranchia) harbor a variety of mating systems. In particular, apomictic parthenogenesis in prosobranchs and self-fertilization in the hermaphrodite pulmonates may be viable alternatives to outcrossing sexuality in a number of species. The coexistence of different mating systems in extant populations provides opportunities to examine the forces directing their evolution. We review the models analyzing and predicting genetic variability in subdivided populations, with an emphasis on the effects of inbreeding. Population genetic data on freshwater pulmonates are examined in the context of selfing rates and the loss of variability under selfing. Furthermore, the genetic and demographic factors thought to influence mating system evolution are considered, and we highlight the different approaches available to estimate mating system parameters, in particular the selfing rate. Recent population biological studies on polyploid species (Bulinus truncatus, Ancylus fluviatilis) indicate that selfing is the predominant mating system. These studies have contributed to a deeper understanding of conceptual issues in the evolution of selfing rates. Throughout, we emphasize the need for further carefully designed studies.