A composite step biconjugate gradient algorithm for nonsymmetric linear systems
 Randolph E. Bank,
 Tony F. Chan
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
The BiConjugate Gradient (BCG) algorithm is the simplest and most natural generalization of the classical conjugate gradient method for solving nonsymmetric linear systems. It is wellknown that the method suffers from two kinds of breakdowns. The first is due to the breakdown of the underlying Lanczos process and the second is due to the fact that some iterates are not welldefined by the Galerkin condition on the associated Krylov subspaces. In this paper, we derive a simple modification of the BCG algorithm, the Composite Step BCG (CSBCG) algorithm, which is able to compute all the welldefined BCG iterates stably, assuming that the underlying Lanczos process does not break down. The main idea is to skip over a step for which the BCG iterate is not defined.
 R. Bank and T. Chan, An analysis of the composite step biconjugate gradient method, Numer. Math. 66 (1993) 295–319. CrossRef
 C. Brezinski, M.R. Zaglia and H. Sadok, Avoiding breakdown and nearbreakdown in Lanczos type algorithms, Numer. Algor. 1 (1991) 261–284.
 C. Brezenski, M.R. Zaglia and H. Sadok, Addendum to: Avoiding breakdown and nearbreakdown in Lanczos type algorithms, Numer. Algor. 2 (1992) 133–136.
 C. Brezinski, M.R. Zaglia and H. Sadok, Breakdowns in the implementation of the Lanczos method for solving linear systems, Int. J. Math. Appl. (1994), to appear.
 T. Chan, E. Gallopoulos, V. Simoncini, T. Szeto and C. Tong, QMRCGSTAB: A quasiminimal residual version of the BiCGSTAB algorithm for nonsymmetric systems, Tech. Rep. CAM 9226, UCLA, Dept. of Math., Los Angeles, CA 900241555 (1992), to appear in SIAM J. Sci. Comp.
 T.F. Chan and T. Szeto, A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems, Numer. Algor. (1994), this issue.
 A. Draux,Polynômes Orthogonaux Formels. Applications, Lect. Notes in Mathematics, vol. 974 (Springer, Berlin, 1983).
 V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal. 21 (1984) 315–339. CrossRef
 R. Fletcher, Conjugate gradient methods for indefinite systems, in:Numerical Analysis Dundee 1975, Lecture Notes in Mathematics 506, ed. G.A. Watson (Springer, Berlin, 1976) pp. 73–89.
 R.W. Freund, A transposefree quasiminimum residual algorithm for nonHermitian linear systems, SIAM J. Sci. Comp. 14 (1993) 470–482. CrossRef
 R.W. Freund, M.H. Gutknecht and N.M. Nachtigal, An implementation of the lookahead Lanczos algorithm for nonHermitian matrices, SIAM J. Sci. Comp. 14 (1993) 137–158. CrossRef
 R.W. Freund and N.M. Nachtigal, QMR: quasi residual residual method for nonHermitian linear systems, Numer. Math. 60 (1991) 315–339. CrossRef
 M. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM J. Matrix Anal. 13 (1992) 594–639. CrossRef
 W. Joubert, Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations, PhD thesis, Univ. of Texas at Austin (1990).
 C. Lanczos, Solution of linear equations by minimized iterations, J. Res. Natl. Bar. Stand. 49 (1952) 33–53.
 D. Luenberger, Hyperbolic pairs in the method of conjugate gradients, SIAM J. Appl. Math. 17 (1969) 1263–1267. CrossRef
 N. Nachtigal, S. Reddy and L. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. 13 (1992) 778–795. CrossRef
 C.C. Paige and M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975) 617–629. CrossRef
 Y. Saad, The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems, SIAM J. Numer. Anal. 19 (1982) 485–506. CrossRef
 M. Schultz and Y. Saad, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7 (1986) 856–869. CrossRef
 P. Sonneveld, CGS, a fast Lanczostype solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 10 (1989) 36–52. CrossRef
 C.H. Tong, A comparative study of preconditioned Lanczos methods for nonsymmetric linear systems, Tech. Rep. SAND918402 UC404, Sandia National Laboratories, Albuquerque (1992).
 H.A. Van Der Vorst, BICGSTAB: A fast and smoothly converging varient of BICG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comp. 13 (1992) 631–644. CrossRef
 Title
 A composite step biconjugate gradient algorithm for nonsymmetric linear systems
 Journal

Numerical Algorithms
Volume 7, Issue 1 , pp 116
 Cover Date
 19940301
 DOI
 10.1007/BF02141258
 Print ISSN
 10171398
 Online ISSN
 15729265
 Publisher
 Baltzer Science Publishers, Baarn/Kluwer Academic Publishers
 Additional Links
 Topics
 Keywords

 Biconjugate gradients
 nonsymmetric linear systems
 65N20
 65F10
 Industry Sectors
 Authors

 Randolph E. Bank ^{(1)}
 Tony F. Chan ^{(2)}
 Author Affiliations

 1. Department of Mathematics, University of California at San Diego, 92092, La Jolla, CA, USA
 2. Department of Mathematics, University of California at Los Angeles, 90024, Los Angeles, CA, USA