Combinatorica

, Volume 8, Issue 3, pp 293–295

Edge coloring of hypergraphs and a conjecture of ErdÖs, Faber, Lovász

  • W. I. Chang
  • E. L. Lawler
Note

DOI: 10.1007/BF02126801

Cite this article as:
Chang, W.I. & Lawler, E.L. Combinatorica (1988) 8: 293. doi:10.1007/BF02126801

Abstract

Call a bypergraphsimple if for any pairu, v of distinct vertices, there is at most one edge incident to bothu andv, and there are no edges incident to exactly one vertex. A conjecture of Erdős, Faber and Lovász is equivalent to the statement that the edges of any simple hypergraph onn vertices can be colored with at mostn colors. We present a simple proof that the edges of a simple hypergraph onn vertices can be colored with at most [1.5n-2 colors].

AMS subject classification (1980)

05 C 1505 C 65

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • W. I. Chang
    • 1
  • E. L. Lawler
    • 1
  1. 1.Computer Science DivisionUniversity of CaliforniaBerkeleyUSA