On divergence-free wavelets

  • Karsten Urban

DOI: 10.1007/BF02123473

Cite this article as:
Urban, K. Adv Comput Math (1995) 4: 51. doi:10.1007/BF02123473


This paper is concerned with the construction of compactly supported divergence-free vector wavelets. Our construction is based on a large class of refinable functions which generate multivariate multiresolution analyses which includes, in particular, the non tensor product case.

For this purpose, we develop a certain relationship between partial derivatives of refinable functions and wavelets with modifications of the coefficients in their refinement equation. In addition, we demonstrate that the wavelets we construct form a Riesz-basis for the space of divergence-free vector fields.


Waveletsdivergence-free vector functions

AMS subject classification


Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Karsten Urban
    • 1
  1. 1.RWTH AachenInstitut für Geometrie und Praktische MathematikAachenGermany