1.

Babaoglu, O. and Raynal, M. (1993)*Sequence-Based Global Predicates for Distributed Computations: Definitions and Detection Algorithms*, IRISA research report No. 729, May 1993.

2.

Birkhoff, G. (1937) Rings of sets,

*Duke Math.*
**J-3**, 311–316.

CrossRef3.

Behrendt, G. (1988) Maximal antichains in partially ordered sets,*ARS Combinatoria*
**25C**, 149–157.

4.

Bonnet, R. and Pouzet, M. (1969) Extensions et stratifications d'ensembles dispersés, C.R.A.S. Paris, t. 268, Série A, 1512–1515.

5.

Bordat, J. P. (1986) Calcul pratique du treillis de Galois d'une correspondance,*Math. Sci. Hum.*
**96**, 31–47.

6.

Charron-Bost, B., Delporte-Gallet, C. and Fauconnier, H. (1992) Local and temporal predicates in distributed systems,*Research Report* No. 92-36, LITP, Paris 7.

7.

Cooper, R. and Marzullo, K. (1991) Consistent detection of global predicates, in:*Proc. ACM/ONR Workshop on Parallel and Distributed Debugging*, pp. 163–173, Santa Cruz, California.

8.

Diehl, C., Jard, C. and Rampon, J. X. (1993) Reachablity analysis on distributed executions, TAPSOFT'93: Theory and Practice of Software Development, in Lecture Notes in Computer Science No. 668, Springer-Verlag, pp. 629–643.

9.

Fidge, C. (1988) Timestamps in message passing systems that preserve the partial ordering, in:*Proc. 11th Australian Computer Science Conference*, pp. 55–66.

10.

Ganter, B. and Reuter, K. (1991) Finding all Closed sets: A general approach,

*Order*
**8**, 283–290.

CrossRef11.

Habib, M., Morvan, M., Pouzet, M. and Rampon, J. X. (1992) Incidence, structures, coding and lattice of maximal antichains, Research Report No. 92-079, LIRMM Montpellier.

12.

Irani, S. (1990) Coloring inductive graphs on-line,*IEEE 31nd Symposium on Foundations of Computer Science* pp. 470–479.

13.

Jard, C., Jourdan, G. V. and Rampon, J. X. (1993) Some “On-line” computations of the ideal lattice of posets,*IRISA Research Report* No. 773.

14.

Lamport, L. (1978) Time, clocks and the ordering of events in a distributed system,

*Communications of the ACM*
**21**(7), 558–565.

CrossRef15.

MacNeille, H. M. (1937) Partially ordered sets,

*Transactions of the American Mathematical Society*
**42**, 416–460.

MathSciNet16.

Markowsky, G. (1975) The factorization and representation of lattices,*Transactions of the American Mathematical Society*
**203**, 185–200.

17.

Markowsky, G. (1992) Primes, irreducibles and extremal lattices,

*Order*
**9**, 265–290.

CrossRef18.

Mattern, F. (1989) Virtual time and global states of distributed systems, in: Cosnard, Quinton, Raynal and Robert, (eds.),*Proc. Int. Workshop on Parallel Distributed Algorithms*, Bonas France, North-Holland.

19.

Morvan, M. and Nourine, L. (1992) Generating minimal interval extensions, R.R. No. 92-015, LIRMM Montpellier.

20.

Reuter, K. (1991) The jump number and the lattice of maximal antichains,

*Discrete Mathematics*
**88**, 289–307.

CrossRef21.

Westbrook, J. and Yan, D. C. K. (1993) Greedy Algorithms for the On-Line Steiner Tree and Generalized Steiner Problems, WADS'93:*Algorithms and Data Structures, Lecture Notes in Computer Science* No. 709, Springer-Verlag, pp. 622–633.

22.

Wille, R. (1982) Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (ed.),*Ordered Sets*, Reidel, Dordrecht, pp. 445–470.

23.

Wille, R. (1985) Finite distributive lattices as concept lattices,*Atti. Inc. Logica Mathematica* (*Siena*)**2**, 635–648.