, Volume 106, Issue 1, pp 129-137

Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The marine, free-living Stilbonematinae (Nematoda: Desmodoridae) are remarkable for the ectosymbiotic, prokaryotic microorganisms that populate their entire body surface. These nematodes occur in sulfidic sediments in the microoxic zone just above the sulfide maximum. Several facts point to a chemolithotrophic, sulfide oxidizing nature of the microorganisms. The oxygen uptake of three species was measured with and without their microbial coat using Cartesian and Gradient Diver microrespirometry in February 1989 at Carrie Bow Cay (Belize Barrier Reef). Symbiont-free stilbonematids exhibited constant and uniform oxygen uptake rates over several hours; rates which are significantly lower than those of oxyphilic nematodes. Freshly extracted stilbonematids, with intact bacterial coats, consumed significantly more oxygen than symbiont-free worms in the first 3 h of measurement. While the rates of aposymbiotic worms were more or less constant over time, the rates of symbiont-carrying worms exhibited a conspicuous drop during prolonged respiration. InStilbonema sp., symbiont carrying individuals kept under oxygenated conditions for more than 12 h had a respiration rate similar to those of aposymbiotic specimens. When such worms were re-incubated in sulfide-enriched seawater the respiration rate was significantly elevated. The possibility of “recharging” the oxygenated symbiosis system via sulfide-uptake is seen as an indication that storage of reduced sulfur compounds, or reserve substances synthetized in the presence of sulfide, play a decisive role in the metabolisms of the symbiotic bacteria. Migration of nematodes between sulfidic and oxidized sediment-layers are, most likely, the key to understanding the success of this nematode-bacteria symbiosis.

Please address all correspondence and requests for reprints to Professor J. Ott
Communicated by O. Kinne, Oldendorf/Luhe