Annals of Global Analysis and Geometry

, Volume 12, Issue 1, pp 357-405

First online:

The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one, theta functions, trace formulas and the Selberg zeta function

  • Ulrich BunkeAffiliated withInstitut für Reine Mathematik (SFB 288), Humboldt-Universität zu Berlin
  • , Martin OlbrichAffiliated withInstitut für Reine Mathematik (SFB 288), Humboldt-Universität zu Berlin
  • , Andreas JuhlAffiliated withInstitut für Angewandte Analysis und Stochastik

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We calculate the wave kernels for the classical rank-one symmetric spaces. The result is employed in order to provide a meromorphic extension of the theta function of an even-dimensional compact locally symmetric space of non-compact type. Moreover we give a short derivation of the Selberg trace formula. We discuss the relation between the right hand side of the functional equation of the Selberg zeta function, the Plancherel measure, Weyl's dimension formula and the wave kernel on the non-compact symmetric space and on its compact dual in an explicit manner.

Key words

Wave kernel symmetric space theta function Selberg zeta function

MSC 1991

58 G 16 58 G 25 22 E 40