Graph isomorphism problem
 V. N. Zemlyachenko,
 N. M. Korneenko,
 R. I. Tyshkevich
 … show all 3 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
The article is a creative compilation of certain papers devoted to the graph isomorphism problem, which have appeared in recent years. An approach to the isomorphism problem is proposed in the first chapter, combining, mainly, the works of Babai and Luks. This approach, being to the survey's authors the most promising and fruitful of results, has two characteristic features: the use of information on the special structure of the automorphism group and the profound application of the theory of permutation groups. In particular, proofs are given of the recognizability of the isomorphism of graphs with bounded valences in polynomial time and of all graphs in moderately exponential time. In the second chapter a free exposition is given of the FilottiMayerMiller results on the isomorphism of graphs of bounded genus. New and more complete proofs of the main assertions are presented, as well as an algorithm for the testing of the isomorphism of graphs of genus g in time O(v^{O}(g)), where v is the number of vertices. In the third chapter certain extended means of the construction of algorithms testing an isomorphism are discussed together with probabilistically estimated algorithms and the Las Vegas algorithms. In the fourth chapter the connections of the graph isomorphism problem with other problems are examined.
 Algorithmic Investigations in Combinatorics [in Russian], Nauka, Moscow (1978).
 V. L. Arlazarov, I. I. Zuev, A. V. Uskov, and I. A. Faradzhev, “Algorithms for bringing finite undirected graphs to canonic form,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 3, 737–743 (1974).
 A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, AdditionWesley, Reading, MA (1974).
 B. Yu. Veisfeiler and A. A. Leman, “Reducing a graph to canonic form and the algebra arising here,” Nauchn.Tekh. Inf., Ser. 2, No. 9, 12–16 (1968).
 G. G. Vizing, “Reduction of the problems of isomorphism and of the isomorphic imbedding of graphs to the problem of finding the incompleteness of a graph,” AllUnion Conf. Cybernetics Problems [in Russian], Novosibirsk (1974), pp. 124–125.
 D. Yu. Grigor'ev, “The reduction of graph isomorphism to polynomial problems,” J. Sov. Math.,20, No. 4, 2296–2298 (1982).
 D. Yu. Grigor'ev, “Complexity of ‘wild’ matrix problems and of the isomorphism of algebras and graphs,” J. Sov. Math.,22, No. 3 1285–1289 (1983).
 M. A. Zaitsev, “On the 3edge isomorphism of graphs,” Vopr. Kibernet., No. 26, 65–76 (1978).
 M. A. Zaitsev, “On the Hamiltonian isomorphism of graphs,” Mat. Zametki,25, No. 2, 299–306 (1979).
 V. N. Zemlyachenko, “Canonic enumeration of trees,” Proc. Sem. Combinatorial Analysis [in Russian], Moscow State Univ. (1970).
 V. N. Zemlyachenko, “On graph identification algorithms,” Vopr. Kibern., No. 15, 33–41 (1975).
 V. N. Zemlyachenko, “Establishment of graph isomorphism,” Mathematical Questions on Modeling Complex Objects [in Russian], Petrozavodsk (1979).
 V. N. Zemlyachenko, “Polynomial identification algorithms of almost all graphs,” Mathematical Questions on Modeling Complex Objects, Petrozavodsk (1982).
 R. M. Karp, “Reducibility of combinatorial problems,” in: Complexity of Computer Computations, IBM Research Center, Yorktown Heights, NY (1972).
 N. M. Korneenko, “Properties of metric spaces of graph isomorphism classes,” Izv. Akad. Nauk BSSR, Ser. Fiz.Mat. Nauk, No. 2, 32–36 (1981).
 N. M. Korneenko, “On the complexity of computation of the distance between graphs,” Izv. Akad. Nauk BSSR, Ser. Fiz.Mat. Nauk, No. 1 (1982).
 A. I. Kostyukovich, “Polynomial equivalence of certain discrete optimization problems,” Izv. Akad. Nauk BSSR, Ser. Fiz.Mat. Nauk, No. 4, 47–49 (1979).
 S. A. Cook, “The complexity of theoremproving procedures,” Proc. Third Ann. ACM Sympos. Theory of Computing, Assoc. Comput. Mach., New York (1971), pp. 151–158.
 V. K. Leont'ev, “Local optimization algorithm for solving certain combinatorial problems,” Vopr. Kibern., No. 15, 61–66 (1975).
 N. N. Metel'skii and N. M. Korneenko, “Metrization of one class of graphs,” Dokl. Akad. Nauk BSSR,23, No. 1, 5–7 (1979).
 A. A. Mironov, “Some properties of number sets realizable in graphs,” Tr. Mosk. Inst. Inzh. Transport., No. 640, 115–120 (1979).
 O. Ore, Theory of Graphs, Am. Math. Soc., Providence, RI (1962).
 C. C. Sims, “Computational methods in the study of permutation groups,” in: Computational Problems in Abstract Algebra, Pergamon Press, Oxford (1970), pp. 169–183.
 D. A. Suprunenko, Groups of Matrices [in Russian], Nauka, Moscow (1972).
 S. A. Trakhtenbrot, “On the theory of repetitionfree contact schemes,” Tr. Mat. Inst. Steklov. Akad. Nauk SSSR,51, 226–269 (1958).
 R. I. Tyshkevich, “Canonic decomposition of a graph,” Dokl. Akad. Nauk BSSR,24, No. 8, 677–679 (1980).
 F. Harary, Graph Theory, AddisonWesley, Reading, MA (1969).
 M. Hall, Jr., The Theory of Groups, MacMillan, New York (1959).
 J. E. Hopcroft and R. E. Tarjan, “Isomorphism of planar graphs,” in: Complexity of Computer Computations, IBM Research Center, Yorktown Heights, NY (1972).
 D. Angluin, “On counting problems and the polynomial hierarchy,” Theor. Comput. Sci.,12, No. 2, 161–163 (1980).
 M. D. Atkinson, “An algorithm for finding the blocks of a permutation group,” Math. Comput.,29, No. 131 (1975).
 L. Babai, “On the isomorphism problem,” App. to Proc. Conf. Foundat. Comput. Theory, Poland (1977), pp. 19–23.
 L. Babai, “The starsystem problem is at least as hard as the graph isomorphism problem,” in: A. Hajnal and V. T. Sós (eds.), Combinatorics, Vol. II, NorthHolland, AmsterdamOxfordNew York (1978), p. 1214.
 L. Babai, “MonteCarlo algorithms in graph isomorphism testing,” Preprint, Univ, Toronto (1979).
 L. Babai, “Isomorphism testing and symmetry of graphis,” Ann. Discrete Math.,8, 101–109 (1980).
 L. Babai, “On the complexity of canonical labeling of strongly regular graphs,” SIAM J. Comput.,9, 212–216 (1980).
 L. Babai, “Moderately exponential bound for graph isomorphism,” in: Fundamentals of Computation Theory, F. Gecseg (ed.), Lect. Notes Comput. Sci., Vol. 117, SpringerVerlag, BerlinHeidelbergNew York (1981), pp. 34–50.
 L. Babai, P. J. Cameron, and P. P. Pàlfy, “On the order of primitive permutation groups with bounded nonAbelian composition factors,” Preprint (1981).
 L. Babai and P. Erdös, “Random graph isomorphism,” Preprint (1977).
 L. Babai, P. Erdös, and S. M. Selkow, “Random graph isomorphism,” SIAM J. Comput.,9, No. 3, 628–635 (1980).
 L. Babai and L. Kucera, “Canonical labeling of graphs in linear average time,” 20th Ann. Sympos. Foundations Comput. Sci., IEEE Computer Soc., New York (1979), pp. 39–46.
 L. Babai and L. Lovász, “Permutation groups and almost regular graphs,” Stud. Sci. Math. Hungar.,8, 141–150 (1973).
 M. Behzad, “The degree preserving group of a graph,” Riv. Mat. Univ. Parma, No. 11, 307–311 (1970).
 K. S. Booth, “Isomorphism testing for graphs, semigroups and finite automata are polynomially equivalent problems,” SIAM J. Comput.,7, No. 3, 273–279 (1978).
 K. S. Booth, “Problems polynomially equivalent to graph isomorphism,” Proc. Sympos. New Directions and Recent Results in Algorithms and Complexity, CarnegieMellon Univ. (1979).
 C. J. Colburn, “On testing isomorphism of permutation graphs,” Networks,11, No. 1, 13–21 (1981).
 M. J. Colburn and C. J. Colburn, “Graph isomorphsim and selfcomplementary graphs,” SIGACT News,10, No. 1, 25–29 (1978).
 M. J. Colburn and C. J. Colburn, “The complexity of combinatorial isomorphism problems, Ann. Discrete Math.,8, 113–116 (1980).
 C. J. Colburn and D. G. Corneil, “On deciding switching equivalence of graphs,” Discrete Appl. Math.,2, 181–184 (1980).
 C. J. Colburn, “The complexity of symmetrizing matrices,” Inf. Process. Lett.,9, No. 3, 108–109 (1979).
 D. G. Corneil, “Recent results on the graph isomorphism problem,” in: Proc. Eighth Manitoba Conf. Numer. Math. and Computing, D. McCarthy and H. C. Williams (eds.), Utilitas Mathematica Publ., Inc., Winnipeg, Man. (1979), pp. 13–31.
 D. G. Cornell and C. C. Gotlieb, “An efficient algorithm for graph isomorphism,” J. Assoc. Comput. Mach.,17, 51–64 (1970).
 D. G. Corneil and D. G. Kirkpatrick, “A theoretical analysis of various heuristics for the graph isomorphism problem,” SIAM J. Comput.,9, No. 2, 281–297 (1980).
 N. Deo, J. M. Davis, and R. E. Lord, “A new algorithm for diagraph isomorphism,” BIT,17, 16–30 (1977).
 P. Erdös and A. Renyi, “Asymmetric graphs,” Acta Math. Acad. Sci. Hung.,14, 295–315 (1963).
 R. A. Edmonds, “A combinatorial representation for polyhedral surfaces,” Not. Am. Math. Soc.,7, 646 (1960).
 I. S. Filotti and J. N. Mayer, “A polynomialtime algorithm for determining the isomorphism of graphs of fixed genus,” Conf. Proc. Twelfth Ann. ACM Sympos. Theory of Computing, Assoc. Comput. Mach., New York (1980), pp. 236–243.
 I. S. Filotti, G. L. Miller, and J. Reif, “On determining the genus of a graph in O(v^{O(g)}) steps,” Conf. Record Eleventh Ann. ACM Sympos. Theory of Comput., Assoc. Comput. Mach., New York (1979), pp. 27–37.
 R. Frucht, “Herstellung von Graphen mit vorgebener abstrakter Gruppe,” Compositio Math.,6, 239–250 (1938).
 R. Frucht, “Lattice with a given abstract group,” Can. J. Math.,2, 417–419 (1950).
 M. Furst, J. Hopcroft, and E. Luks, “A subexponential algorithm for trivalent graph isomorphism,” Congr. Numer.,28, 421–446 (1980).
 M. Furst, J. Hopcroft, and E. Luks, “Polynomialtime algorithms for permutation groups,” 21st Ann. Sympos. Foundations Comput. Sci., IEEE, NY (1980), pp. 36–41.
 M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, San Francisco (1979).
 G. Gati, “Further annotated bibliography on the isomorphism disease,” J. Graph Theory,3, No. 2, 95–104 (1979).
 M. K. Goldberg, “A nonfactorial algorithm for testing isomorphism of two graphs,” Combinatorics and Optimization, Research Reports, No. 8036, Faculty Math. Univ. Waterloo (1980).
 D. Gries, “Describing an algorithm by Hopcroft,” Acta Inf.,2, 97–109 (1973).
 R. Halin and H. A. Young, “A note on isomorphism of graphs,” J. London Math. Soc.,42, No. 2, 254–256 (1967).
 Z. Hedrlin and A. Pultr, “On the full embeddings of categories of algebras,” Ill. J. Math.,10, 392–406 (1966).
 P. Hell and J. Nesetril, “Graphs and ksocieties,” Can. Math. Bull.,13, No. 3, 375–381 (1970).
 D. G. Higman, “Coherent configurations. I,” Geometriae Dedicata,4, 1–32 (1975).
 J. E. Hopcroft, An n log n algorithm for isomorphism of planar triplet connected graphs,” Stanford Comput. Sci. Rept., STANCS71192 (1971).
 J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” in: Theory of Machines and Computations, Z. Kohavi and A. Paz (eds.), Academic Press, New YorkLondon (1971), pp. 189–196.
 J. E. Hopcroft and R. E. Tarjan, “Dividing a graph into triconnected components,” SIAM J. Comput.,2, No. 3, 136–158 (1973).
 J. E. Hopcroft and R. E. Tarjan, “Efficient planarity testing,” J. Assoc. Comput. Mach.,21, No. 4, 549–568 (1974).
 J. E. Hopcroft and J. K. Wong, “Linear time algorithm for isomorphism of planar graphs; preliminary report,” Sixth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1974), pp. 172–184.
 H. B. Hunt, III and D. J. Rosenkrantz, “Complexity of grammatical similarity relations,” Proc. Conf. Theor. Comput. Sci., Comput. Sci. Dept., Univ. Waterloo, Ontario (1978), pp. 139–145.
 R. M. Karp, “Probabilistic analysis of a canonical labeling algorithm for graphs,” Proc. Sympos. Pure Math., Vol. 34, Am. Math. Soc., Providence, RI (1979), pp. 365–378.
 D. Kozen, “Complexity of finitely presented algebras,” Conf. Record Ninth Ann. ACM Sympos. Theory of Comput., Assoc. Comput. Mach., New York (1977), pp. 164–167.
 D. Kozen, “A clique problem equivalent to graph isomorphism,” SIGACT News,10, No. 2, 50–52 (1978).
 L. Kucera, “Theory of categories and negative results in computational complexity,” Preprint, Karlov Univ., Prague (1976).
 F. Lalonde, “Le problème d'étoiles pour graphes est NPcomplet,” Discrete Math.,33, No. 3, 271–280 (1981).
 L. LesniakFoster, “Parameterpreserving group of a graph,” Riv. Mat. Univ. Parma, No. 1, 113–117 (1975 (1977)).
 G. Levi, “Graph isomorphism: A heuristic edgepartitioningoriented algorithm,” Computing,12, 291–313 (1977).
 D. Lichtenstein, “Isomorphism for graphs embeddable on the projective plane,” Conf. Proc. Twelfth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1980), pp. 218–224.
 R. M. Lipton, “The beacon set approach to graph isomorphism,” SIAM J. Comput.,9 (1980).
 L. Lovasz, “On the ratio of optimal and fractional cover,” Discrete Math.,13, 383–390 (1975).
 A. Lubiw, “Some NPcomplete problems similar to graph isomorphism,” SIAM J. Comput.,10, No. 1, 11–21 (1981).
 G. S. Lueker and K. S. Booth, “A linear time algorithm for deciding interval graph isomorphism,” J. Assoc. Comput. Mach.,26, No. 2, 183–195 (1979).
 E. M. Luks, “Isomorphism of graphs of bounded valence can be tested in polynomial time,” 21st Ann. Sympos. Foundations Comput. Sci., IEEE, Inc., New York (1980), pp. 42–49.
 R. Mathon, “Sample graphs for isomorphism testing,” in: Proc. Ninth S. E. Conf. Combinatorics, Graph Theory, Comput., F. Hoffman, D. McCarthy, R. C. Mullin, and R. G. Stanton (eds.), Utilitas Mathematica Publ. Inc., Winnipeg, Man. (1978), pp. 499–517.
 R. Mathon, “A note on graph isomorphism counting problems,” Inf. Process. Lett.,8, No. 3, 131–132 (1978).
 B. D. McKay, “Computing algorithms and canonical labeling of graphs,” in: Combinatorial Mathematics, Lect. Notes Math., Vol. 686, SpringerVerlag, BerlinHeidelbergNew York (1978), pp. 223–232.
 B. D. McKay, “Backtrack programming and isomorph rejection on ordered subsets,” Ars Combin.,5, 65–69 (1978).
 B. D. McKay, “Hadamard equivalence via graph isomorphism,” Discrete Math.,27, No. 2, 213–214 (1979).
 C. J. Colburn and B. D. McKay, “A dorrection to Colburn's paper on the complexity of matrix symmetrizability,” Inf. Process. Lett.,11, No. 2, 96–97. (See [50].)(.
 G. L. Miller, “Graph isomorphism, general remarks,” Conf. Record Ninth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1977), pp. 143–150.
 G. L. Miller, “On the n^{log n} isomorphism technique (a preliminary report),” Conf. Record Tenth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1978), pp. 51–58.
 G. L. Miller, “Graph isomorphism, general remarks,” J. Comput. Syst. Sci.,18, 128–142 (1979).
 G. L. Miller, “Isomorphism testing for graphs of bounded genus,” Conf. Proc. Twelfth Ann. ACM Sympos. Theory Comput., Assoc. Comput. Mach., New York (1980), pp. 225–235.
 A. Pultr, “Concerning universal categories,” Comment. Math. Univ. Carolinae,5, 227–239 (1964).
 R. C. Read and D. G. Corneil, “The graph isomorphism disease,” J. Graph Theory,1, 339–363 (1977).
 F. Schweiggert, “Zur isomorphie endlicher Graphen und Strukturen,” Diss. Dok. Naturwiss. (1979).
 F. Sirovich, “Isomorfismo fra grafi: un algoritmo efficiente per trovare tutti gli isomorphismi,” Calcolo,8, No. 4, 301–337 (1971).
 V. T. Sós, in: The Problems section of: A. Hajnal and V. T. Sós (eds.), Combinatorics, Vol. II, NorthHolland, AmsterdamOxfordNew York (1978), p. 1214. (See [33].)
 J. Turner, “Generalized matrix functions and the graph isomorphism problem,” SIAM J. Appl. Math.,16, No. 3, 520–526 (1968).
 S. H. Unger, “GIT: a heuristic program for testing pairs of directed line graphs for isomorphism,” Commun. Assoc. Comput. Mach.,7, No. 1, 26–34 (1964).
 L. G. Valiant, “The complexity of computing the permanent,” Theor. Comput. Sci.,8, 189–201 (1979).
 H. De Vries and A. B. De Miranda, “Groups with small number of automorphisms,” Math. Z.,68, 450–464 (1958).
 L. Weinberg, “Plane representations and codes for planar graphs,” Proc. Third Ann. Allerton Conf. Circuit Syst. Theory (1965), pp. 733–744.
 L. Weinberg, “A simple and efficient algorithn for determining isomorphism of planar triply connected graphs,” IEEE Trans. Commun. Technol.,CT13, 142–148 (1960).
 B. Weisfeiler, “On construction and identification of graphs,” Lect. Notes Math.,558, SpringerVerlag, BerlinHeidelbergNew York (1976).
 H. Whitney, “Congruent graphs and the connectivity of graphs,” Am. J. Math.,54, 150–168 (1932).
 H. Whitney, “A set of topological invariants for graphs,” Am. J. Math.,55, 221–235 (1933).
 H. Whitney, “On the classification of graphs,” Am. J. Math.,55, 236–244 (1933).
 H. Whitney, “2isomorphic graphs,” Am. J. Math.,55, 245–254 (1933).
 F. F. Yao, “Graph 2isomorphism is NPcomplete,” Inf. Process. Lett.,9, No. 2, 68–72 (1979).
 B. Zelinka, “On a certain distance between isomorphism classes of graphs,” Casopis Pest. Math.,100, No. 4, 371–373.
 Title
 Graph isomorphism problem
 Journal

Journal of Soviet Mathematics
Volume 29, Issue 4 , pp 14261481
 Cover Date
 19850501
 DOI
 10.1007/BF02104746
 Print ISSN
 00904104
 Online ISSN
 15738795
 Publisher
 Kluwer Academic PublishersPlenum Publishers
 Additional Links
 Topics
 Industry Sectors