Communications in Mathematical Physics

, Volume 146, Issue 2, pp 357–396

Ergodic systems ofn balls in a billiard table


  • Leonid Bunimovich
    • Shirshov Institute of OceanologyRussian Academy of Sciences
    • Fakultät für PhysikUniversität Bielefeld
  • Carlangelo Liverani
    • Mathematics DepartmentUniversity of Rome II
  • Alessandro Pellegrinotti
    • Mathematics DepartmentUniversity of Rome I
  • Yurii Suhov
    • Institute for Problems of Information TransmissionRussian Academy of Sciences
    • Statistical Laboratory, DPMMSUniversity of Cambridge

DOI: 10.1007/BF02102633

Cite this article as:
Bunimovich, L., Liverani, C., Pellegrinotti, A. et al. Commun.Math. Phys. (1992) 146: 357. doi:10.1007/BF02102633


We consider the motion ofn balls in billiard tables of a special form and we prove that the resulting dynamical systems are ergodic on a constant energy surface; in fact, they enjoy theK-property. These are the first systems of interacting particles proven to be ergodic for an arbitrary number of particles.

Copyright information

© Springer-Verlag 1992