Communications in Mathematical Physics

, Volume 146, Issue 2, pp 357–396

Ergodic systems ofn balls in a billiard table

  • Leonid Bunimovich
  • Carlangelo Liverani
  • Alessandro Pellegrinotti
  • Yurii Suhov
Article

DOI: 10.1007/BF02102633

Cite this article as:
Bunimovich, L., Liverani, C., Pellegrinotti, A. et al. Commun.Math. Phys. (1992) 146: 357. doi:10.1007/BF02102633

Abstract

We consider the motion ofn balls in billiard tables of a special form and we prove that the resulting dynamical systems are ergodic on a constant energy surface; in fact, they enjoy theK-property. These are the first systems of interacting particles proven to be ergodic for an arbitrary number of particles.

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Leonid Bunimovich
    • 1
    • 2
  • Carlangelo Liverani
    • 3
  • Alessandro Pellegrinotti
    • 4
  • Yurii Suhov
    • 5
    • 6
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Fakultät für PhysikUniversität BielefeldBielefeld 1FRG
  3. 3.Mathematics DepartmentUniversity of Rome IIRomeItaly
  4. 4.Mathematics DepartmentUniversity of Rome IRomeItaly
  5. 5.Institute for Problems of Information TransmissionRussian Academy of SciencesMoscowRussia
  6. 6.Statistical Laboratory, DPMMSUniversity of CambridgeCambridgeEngland, UK