1.

Andrews, G.: On the existence of solutions to the equation

*u*
_{tt}=u

_{xxt}+σ(

*u*
_{x})

_{x}. J. Diff. Eq.

**35**, 200–231 (1980)

CrossRef2.

Andrews, G., Ball, J.M.: Asymptotic behaviour and changes in phase in one-dimensional nonlinear viscoelasticity. J. Diff. Eq.**44**, 306–341 (1982)

3.

Ang, D.D., Dinh, A.P.N.: On the strongly damped wave equation:

*u*
_{tt}−Δ

*u*−Δ

*u*
_{t}+f(u)=0. SIAM J. Math. Anal.

**19**, 1409–1418 (1988)

CrossRef4.

Arima, R., Hasegawa, Y.: On global solutions for mixed problem of semilinear differential equation. Proc. Jpn Acad.**39**, 721–725 (1963)

5.

Aviles, P., Sandefur, J.: Nonlinear second order equations with applications to partial differential equations. J. Diff. Eq.

**58**, 404–427 (1985)

CrossRef6.

Cleménts, J.: Existence theorems for a quasilinear evolution equation. SIAM J. Appl. Math.

**26**, 745–752 (1974)

CrossRef7.

Cleménts, J.: On the existence and uniqueness of solutions of the equation\(u_u (\partial /\partial x_i )\sigma _i (u_{x_i } ) - \Delta _N u_t = f\). Canad. Math. Bull.**18**, 181–187 (1975)

8.

Dafermos, C.M.: The mixed initial-boundary value problem for the equations of nonlinear one-dimensional visco-elasticity. J. Diff. Eq.

**6**, 71–86 (1969)

CrossRef9.

Davis, P.: A quasi-linear hyperbolic and related third order equation. J. Math. Anal. Appl.

**51**, 596–606 (1975)

CrossRef11.

Ebihara, Y.: Some evolution equations with the quasi-linear strong dissipation. J. Math. Pures et Appl.**58**, 229–245 (1979)

12.

Engler, H.: Strong solutions for strongly damped quasilinear wave equations. Contemp. Math.**64**, 219–237 (1987)

13.

Friedman, A., Necas, J.: Systems of nonlinear wave equations with nonlinear viscosity. Pacific J. Math.**135**, 29–55 (1988)

14.

Greenberg, J.M., MacCamy, R.C., Mizel, J.J.: On the existence, uniqueness, and stability of the equation σ′(u_{x})u_{xx}-λu_{xxt}=ρ_{o}u_{u}. J. Math. Mech.**17**, 707–728 (1968)

15.

Greenberg, J.M.: On the existence, uniqueness, and stability of the equation ρ

_{o}X

_{tt}=E(X

_{x})X

_{xx}+λX

_{xxt}. J. Math. Anal. Appl.

**25**, 575–591 (1969)

CrossRef16.

Kato, T.: Abstract differential equations and nonlinear mixed problem. Scuola Normale Superiore, Lezioni Fermiane, Pisa (1985)

17.

Matsumura, A.: Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation. Publ. RIMS, Kyoto Univ.**13**, 349–379 (1977)

18.

Mizohata, K., Ukai, S.: The global existence of small amplitude solutions to the nonlinear acoustic wave equation. Preprint in 1991, Department of Information Sci., Tokyo Inst. of Tech.

19.

Pecher, H.: On global regular solutions of third order partial differential equations. J. Math. Anal. Appl.

**73**, 278–299 (1980)

CrossRef20.

Potier-Ferry, M.: On the mathematical foundation of elastic stability, I. Arch. Radional Mech. Anal.**78**, 55–72 (1982)

21.

Rabinowitz, P.: Periodic solutions of nonlinear partial differential equations. Commun. Pure Appl. Math.,**20**, 145–205 (1967); II,-om ibid Rabinowitz, P.: Periodic solutions of nonlinear partial differential equations. Commun. Pure Appl. Math.**22**, 15–39 (1969)

22.

Shibata, Y.: On the Neumann problem for some linear hyperbolic systems of 2^{nd} order with coefficients in Sobolev spaces. Tsukuba J. Math.**13**, 283–352 (1989)

23.

Shibata, Y., Kikuchi, M.: On the mixed problem for some quasilinear hyperbolic system with fully nonlinear boundary condition. J. Diff. Eq.

**80**, 154–197 (1989)

CrossRef24.

Webb, G.F.: Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Canada J. Math.**32**, 631–643 (1980)

25.

Yamada, Y.: Some remarks on the equation*y*
_{tt}−σ(*y*
_{x})y_{xx}−y_{xtx}=f. Osaka J. Math.**17**, 303–323 (1980)