Inventiones mathematicae

, Volume 108, Issue 1, pp 549–574

A sharp form of Nevanlinna's second fundamental theorem

  • A. Hinkkanen

DOI: 10.1007/BF02100617

Cite this article as:
Hinkkanen, A. Invent Math (1992) 108: 549. doi:10.1007/BF02100617


Letf be meromorphic in the plane. We find a sharp upper bound for the error term
$$S(r,f) = m(r,f) + \sum\limits_{i = 1}^q {m(r,a_i ,f)} + N_1 (r,f) - 2T(r,f)$$
in Nevanlinna's second fundamental theorem. For any positive increasing functions ϕ(t)/t andp(t) with\(\int\limits_1^\infty {dt/\varphi (t)}< \infty \) and\(\int\limits_1^\infty {dt/p(t)} = \infty \) we have
$$S\left( {r,f} \right) \leqq \log ^ + \left\{ {\frac{{\varphi \left( {T\left( {r,f} \right)} \right)}}{{p\left( r \right)}}} \right\} + O\left( 1 \right)$$
asr→∞ outside a setE with\(\int\limits_E {dr/p(r)}< \infty \). Further if ψ(t)/t is positive and increasing and\(\int\limits_1^\infty {dt/} \psi (t) = \infty \) then there is an entiref such thatS(r, f)≧logψ(T(r, f)) outside a set of finite linear measure. We also prove analogous results for functions meromorphic in a disk.

AMS (1991) Classification

Primary 30D35

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Hinkkanen
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA