Communications in Mathematical Physics

, Volume 143, Issue 3, pp 501–525

A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description

  • E. Caglioti
  • P. L. Lions
  • C. Marchioro
  • M. Pulvirenti

DOI: 10.1007/BF02099262

Cite this article as:
Caglioti, E., Lions, P.L., Marchioro, C. et al. Commun.Math. Phys. (1992) 143: 501. doi:10.1007/BF02099262


We consider the canonical Gibbs measure associated to aN-vortex system in a bounded domain Λ, at inverse temperature\(\widetilde\beta \) and prove that, in the limitN→∞,\(\widetilde\beta \)/N→β, αN→1, where β∈(−8π, + ∞) (here α denotes the vorticity intensity of each vortex), the one particle distribution function ϱN = ϱNx,x∈Λ converges to a superposition of solutions ϱα of the following Mean Field Equation:
$$\left\{ {\begin{array}{*{20}c} {\varrho _{\beta (x) = } \frac{{e^{ - \beta \psi } }}{{\mathop \smallint \limits_\Lambda e^{ - \beta \psi } }}; - \Delta \psi = \varrho _\beta in\Lambda } \\ {\psi |_{\partial \Lambda } = 0.} \\ \end{array} } \right.$$

Moreover, we study the variational principles associated to Eq. (A.1) and prove thai, when β→−8π+, either ϱβ → δx0 (weakly in the sense of measures) wherex0 denotes and equilibrium point of a single point vortex in Λ, or ϱβ converges to a smooth solution of (A.1) for β=−8π. Examples of both possibilities are given, although we are not able to solve the alternative for a given Λ. Finally, we discuss a possible connection of the present analysis with the 2-D turbulence.

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • E. Caglioti
    • 1
  • P. L. Lions
    • 2
  • C. Marchioro
    • 3
  • M. Pulvirenti
    • 4
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.CeremadeUniversité Paris-DauphineParisFrance
  3. 3.Dipartimento di MatematicaUniversitá di Roma “La Sapienza”RomaItaly
  4. 4.Dipartimento di MatematicaUniversitá di L'AquilaItaly