Communications in Mathematical Physics

, Volume 153, Issue 2, pp 245–276

Perturbative renormalization of composite operators via flow equations II: Short distance expansion

  • G. Keller
  • C. Kopper

DOI: 10.1007/BF02096643

Cite this article as:
Keller, G. & Kopper, C. Commun.Math. Phys. (1993) 153: 245. doi:10.1007/BF02096643


We give a rigorous and very detailed derivation of the short distance expansion for a product of two arbitrary composite operators in the framework of the perturbative Euclidean massiveΦ44. The technically almost trivial proof rests on an extension of the differential flow equation method to Green functions with bilocal insertions, for which we also establish a set of generalized Zimmermann identities and Lowenstein rules.

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. Keller
    • 1
  • C. Kopper
    • 2
  1. 1.Max-Planck-Institut für PhysikWerner-Heisenberg-InstitutMünchen 40Germany
  2. 2.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany
  3. 3.Department of MathematicsUniversity of VirginiaCharloltesoilleUSA