, Volume 8, Issue 5, pp 595-616

Behavioral reproductive isolation inDrosophila silvestris, D. heteroneura, and their F1 hybrids (Diptera: Drosophilidae)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We investigated the role that courtship and aggressive interactions may have for the maintenance of reproductive isolation betweenDrosophila silvestris andD. heteroneura. We examined the behavioral bases of reproductive isolation between the parental species and we examined the courtship success of each sex of both reciprocal F1 hybrids when paired with the parental species. We found reduced copulation success among heterotypic parental pairs compared to homotypic pairs, which was primarily due to the lack of courtship initiation betweenD. silvestris males andD. heteroneura females. When hybrid males from both reciprocal crosses were paired with parental females their copulation successes were not significantly different from that of parental males. In contrast, hybrid females from both crosses had reduced copulation success withD. silvestris males, which in turn was primarily due to a reduced success of reaching later stages of courtship. The time spent in copulation by hybrid males was intermediate between the two parental males. We studied aggression by observing the interactions of males of heterotypic pairs, both between the parental species and between the hybrids and parental males. A lack of aggressive interactions betweenD. silvestris males andD. heteroneura males in addition to the lack of courtship suggests thatD. silvestris males do not respond toD. heteroneura individuals of either sex. Hybrid males were equally successful in winning fights with bothD. silvestris andD. heteroneura males. These results indicate that the behavioral isolation betweenD. silvestris andD. heteroneura may be largely a consequence of the earliest stages of interactions. The two species may differ either in activity levels or in morphological or chemical traits that are important for species and mate recognition. The relatively high copulation and aggressive success of hybrids indicates that sexual selection against hybrids alone is unlikely to be a sufficient force to reduce gene flow and maintain species distinctions.