[1]

F. Aurenhammer. Power diagrams: properties, algorithms and applications.*S1AM J. Comput.*,**16** (1987), 78–96.

[2]

F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure.*ACM Comput. Surveys*,**23** (1991), 345–406.

[3]

J.-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree.*Theoret. Comput. Sci.*,**112** (1993), 339–354.

[4]

H. Bruggesser and P. Mani. Shellable decompositions of cells and spheres.*Math. Scand.*,**29** (1971), 197–205.

[5]

C. Buchta, J. Müller, and R. F. Tichy. Stochastical approximation of convex bodies.*Math. Ann.*,**271** (1985), 225–235.

[6]

K. Clarkson and P. Shor. Applications of random sampling in computational geometry.*Discrete Comput. Geom.*,**4**(1989), 387–421.

[7]

B. N. Delaunay. Sur la sphère vide.*Izv. Akad. Nauk SSSR Otdel. Mat. Est. Nauk*,**7** (1934), 793–800.

[8]

O. Devillers, S. Meiser, and M. Teillaud. The space of spheres, a geometric tool to unify duality results on Voronoi diagrams.*Proc. 4th Canad. Conf. on Computational Geometry*, 1992, pp. 263–268.

[9]

R. A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time.*Discrete Comput. Geom.*,**6**(1991), 343–367.

[10]

H. Edelsbrunner.*Algorithms in Combinatorial Geometry*. Springer-Verlag, Heidelberg, 1987.

[11]

H. Edelsbrunner. An acyclicity theorem for cell complexes in*d* dimensions.*Combinatorica*,**10** (1990), 251–260.

[12]

H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane.*IEEE Trans. Inform. Theory*,**29** (1983), 551–559.

[13]

H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms.*ACM Trans. Graphics*,**9** (1990), 66–104.

[14]

H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. Manuscript, Dept. Comput. Sci., Univ. Illinois at Urbana-Champaign, 1992.

[15]

L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams.*Algorithmica*,**7** (1992), 381–413.

[16]

B. Joe. Three-dimensional triangulations from local transformations.*SIAM J. Sci. Statist. Comput.*,**10** (1989), 718–741.

[17]

B. Joe. Construction of three-dimensional Delaunay triangulations using local transformations.*Comput. Aided Geom. Design*,**8** (1991), 123–142.

[18]

C. L. Lawson. Generation of a triangular grid with applications to contour plotting. Memo 299, Jet Propulsion Laboratory, Pasadena, CA, 1972.

[19]

C. L. Lawson. Software for*C*
^{1} surface interpolation. In*Mathematical Software III*, edited by J. Rice. Academic Press, New York, 1977, pp. 161–194.

[20]

C. L. Lawson. Properties of*n*-dimensional triangulations.*Comput. Aided Geom. Design*,**3** (1986), 231–246.

[21]

C. Lee. Regular triangulations of convex polytopes.*Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift*, edited by P. Gritzmann and B. Sturmfels, American Mathematical Society, Providence, RI, 1991, 443–456.

[22]

K. Melhorn, S. Meiser, and C. Ó'Dúnlaing. On the construction of abstract Voronoi diagrams.*Discrete Comput. Geom.*,**6** (1991), 211–224.

[23]

F. P. Preparata and M. I. Shamos.*Computational Geometry—An Introduction*. Springer-Verlag, New York, 1985.

[24]

J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.*Math. Ann.*,**83** (1921), 113–115.

[25]

V. T. Rajan. Optimality of the Delaunay triangulations in ℜ^{d}.*Proc. 7th Ann. Symp. on Computational Geometry*, 1991, pp. 357–363.

[26]

E. Schönhardt. Über die Zerlegung von Dreieckspolyedern in Tetraeder.*Math. Ann.*,**98**(1928), 309–312.

[27]

R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face.*Proc. 18th Ann. ACM Symp. on Theory of Computing*, 1986, pp 403–413.

[28]

G. F. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques.*J. Reine Angew. Math.*,**133** (1907), 97–178.