1.

E. Arge, M. Dæhlen, and A. Tveito,*Box spline interpolation; a computational study* J. Comput. Appl. Math., 44 (1992), pp. 303–329.

2.

S. F. Ashby,*Polynomial preconditioning for conjugate gradient methods,* Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, Ph.D. thesis, 1987. (Report No. UIUCDCS-R-87-1355.)

3.

S. F. Ashby,*Minimax polynomial preconditioning for Hermitian linear systems* SIAM J. Matrix Anal., 12 (1991), pp. 766–789.

4.

S. F. Ashby, M. J. Holst, T. A. Manteuffel, and P. E. Saylor,*The role of the inner product in stopping criteria for conjugate gradient iterations,* Report UCRL-JC-112586, Comp. & Math. Research Division, Lawrence Livermore National Lab., 1992.

5.

S. F. Ashby, T. A. Manteuffel, and J. S. Otto,*A comparison of adaptive Chebyshev and least squares polynomial preconditioning for Hermitian positive definite linear systems* SIAM J. Sci. Stat. Comput., 13 (1992), pp. 1–29.

6.

S. F. Ashby, T. A. Manteuffel, and P. E. Saylor,*Adaptive polynomial preconditioning for Hermitian linear systems* BIT, 29 (1989), pp. 583–609.

7.

S. F. Ashby, T. A. Manteuffel, and P. E. Saylor,*A taxonomy for conjugate gradient methods* SIAM J. Numer. Anal., 27 (1990), pp. 1542–1568.

8.

O. Axelsson and G. Lindskog,*On the eigenvalue distribution of a class of preconditioning methods* Numer. Math., 48 (1986), pp. 479–498.

9.

O. Axelsson and G. Lindskog,*On the rate of convergence of the preconditioned conjugate gradient method* Numer. Math., 48 (1986), pp. 499–523.

10.

P. N. Brown and A. C. Hindmarsh,*Matrix-free methods for stiff systems of ODE's* SIAM J. Numer. Anal., 23 (1986), pp. 610–638.

11.

T. F. Chan,*Fourier analysis of relaxed incomplete factorization preconditioners* SIAM J. Sci. Stat. Comput., 12 (1991), pp. 668–680.

12.

T. F. Chan and H. C. Elman,*Fourier analysis of iterative methods for elliptic problems* SIAM Review, 31 (1989), pp. 20–49.

13.

P. Concus, G. H. Golub, and D. O'Leary,*A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations,* in Sparse Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, 1976, pp. 309–332.

14.

S. D. Conte and C. de Boor,*Elementary Numerical Analysis,* McGraw-Hill, 1981.

15.

J. E. Dennis Jr. and H. Wolkowicz,*Sizing and least-change secant methods* SIAM J. Numer. Anal., 30 (1993), pp. 1291–1314.

16.

J. M. Donato and T. C. Chan,*Fourier analysis of incomplete factorization preconditioners for three-dimensional anisotropic problems* SIAM J. Sci. Stat. Comput., 13 (1992), pp. 319–338.

17.

P. F. Dubois, A. Greenbaum, and G. H. Rodrigue,*Approximating the inverse of a matrix for use in iterative algorithms on vector processors* Computing, 22 (1979), pp. 257–268.

18.

A. Greenbaum,*Comparison of splittings used with the conjugate gradient algorithm* Numer. Math., 33 (1979), pp. 181–194.

19.

A. Greenbaum and G. H. Rodrigue,*Optimal preconditioners of a given sparsity pattern* BIT, 29 (1989), pp. 610–634.

20.

I. Gustafsson,*A class of first order factorization methods* BIT, 18 (1978), pp. 142–156.

21.

A. Jennings,*Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method* J. Inst. Maths. Applics. 20 (1977), pp. 61–72.

22.

O. G. Johnson, C. A. Micchelli, and G. Paul,*Polynomial preconditioners for conjugate gradient calculations* SIAM J. Numer. Anal. 20 (1983), pp. 362–376.

23.

I. E. Kaporin,*New convergence results and preconditioning strategies for the conjugate gradient method,* Preprint, Dept. of Comp. Math. and Cyb., Moscow State University, 1992.

24.

The Mathworks,*Pro-Matlab User's Guide,* The Mathworks, 1990.

25.

J. A. Meijerink and H. A. van der Vorst,*An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix* Math. Comp., 31 (1977), pp. 148–162.

26.

D. P. O'Leary,*Yet another polynomial preconditioner for the conjugate gradient algorithm* Linear Algebra Appl., 154/56 (1991), pp. 377–388.

27.

G. Pini and G. Gambolati,*Is a simple diagonal scaling the best preconditioner for conjugate gradients on supercomputers?* Adv. Water Resources, 13 (1990), pp. 147–153.

28.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,*Numerical Recipes in C. The Art of Scientific Computing,* Cambridge University Press, 1988.

29.

Z. Strakoš,*On the real convergence rate of the conjugate gradient method* Linear Algebra Appl., 154/56 (1991), pp. 535–549.

30.

A. van der Sluis and H. A. van der Vorst,*The rate of convergence of conjugate gradients* Numer. Math., 48 (1986), pp. 543–560.

31.

R. Winther,*Some superlinear convergence results for the conjugate gradient method* SIAM J. Numer. Anal., 17 (1980), pp. 14–17.