BIT Numerical Mathematics

, Volume 10, Issue 1, pp 38–73

On Nielsen's generalized polylogarithms and their numerical calculation

Authors

  • K. S. Kölbig
    • CERN
    • University of Geneva
  • J. A. Mignaco
    • CERN
    • University of Geneva
  • E. Remiddi
    • CERN
    • University of Geneva
Article

DOI: 10.1007/BF01940890

Cite this article as:
Kölbig, K.S., Mignaco, J.A. & Remiddi, E. BIT (1970) 10: 38. doi:10.1007/BF01940890

Abstract

The generalized polylogarithms of Nielsen are studied, in particular their functional relations. New integral expressions are obtained, and relations for function values of particular arguments are given. An Algol procedure for calculating 10 functions of lowest order is presented. The numerical values of the Chebyshev coefficients used in this procedure are tabulated. A table of the real zeros of these functions is also given.

Download to read the full article text

Copyright information

© BIT Foundations 1970