1.

S. N. Afriat,*Orthogonal and oblique projectors and the characteristics of pairs of vector spaces*, Camb. Philos. Soc., 53 (1957), 800–816.

2.

A. Ben-Israel,

*On error bounds for generalized inverses*, SIAM J. Numer. Anal. 3 (1966), 585–592.

CrossRef3.

Å. Björck,*Solving linear least squares problems by Gram-Schmidt orthogonalization*, BIT 7 (1967), 1–21.

4.

Å. Björck,*Iterative refinement of linear least squares solutions I*, BIT 7 (1967), 257–278.

5.

Ch. Davis and W. M. Kahan,

*The rotation of eigenvectors by a perturbation III*, SIAM J. Numer. Anal. 7 (1970), 1–46.

CrossRef6.

C. A. Desoer and B. H. Whalen,*A note on pseudoinverses*, J. SIAM 11 (1963), 442–447.

7.

G. H. Golub and V. Pereyra,*The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate*, Stanford University, Computer Science Report, STAN — CS — 72 — 261 (1972).

8.

G. H. Golub and J. H. Wilkinson,*Note on the iterative refinement of least squares solution*, Num. Math. 9 (1966), 139–148.

9.

R. J. Hanson and C. L. Lawson,*Extensions and applications of the Householder algorithm for solving linear least squares problems*, Mathematics of Computation, Vol. 23 (1969), 787–812.

10.

A. S. Householder,*The Theory of Matrices in Numerical Analysis*, Blaisdell, New York (1964).

11.

T. Kato,*Perturbation Theory for Linear Operators*, Springer, Berlin (1966).

12.

L. Mirsky,*Symmetric gauge functions and unitarily invariant norms*, Quart. J. Math. Oxford (2) 11 (1960), 50–59.

13.

V. Pereyra,*Stability of general systems of linear equations, aequationes mathematicae*, Vol. 2 (1969), 194–206.

14.

G. Peters and J. H. Wilkinson,

*The least squares problem and pseudo-inverses*, The Computer Journal Vol. 13 (1970), 309–316.

CrossRef15.

A. van der Sluis,*Stability of solutions of linear algebraic systems*, Num. Math. 14 (1970), 246–251.

16.

G. W. Stewart,

*On the continuity of the generalized inverse*, SIAM J. Appl. Math., Vol. 17 (1969), 33–45.

CrossRef17.

P.-Å. Wedin,*On pseudo-inverses of perturbed matrices*, Lund Un. Comp. Sc. Tech. Rep. (1969).