, Volume 10, Issue 1, pp 1-23

An efficient algorithm for finding the CSG representation of a simple polygon

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Modeling two-dimensional and three-dimensional objects is an important theme in computer graphics. Two main types of models are used in both cases: boundary representations, which represent the surface of an object explicitly but represent its interior only implicitly, and constructive solid geometry representations, which model a complex object, surface and interior together, as a boolean combination of simpler objects. Because neither representation is good for all applications, conversion between the two is often necessary.

We consider the problem of converting boundary representations of polyhedral objects into constructive solid geometry (CSG) representations. The CSG representations for a polyhedronP are based on the half-spaces supporting the faces ofP. For certain kinds of polyhedra this problem is equivalent to the corresponding problem for simple polygons in the plane. We give a new proof that the interior of each simple polygon can be represented by a monotone boolean formula based on the half-planes supporting the sides of the polygon and using each such half-plane only once. Our main contribution is an efficient and practicalO(n logn) algorithm for doing this boundary-to-CSG conversion for a simple polygon ofn sides. We also prove that such nice formulae do not always exist for general polyhedra in three dimensions.

The first author would like to acknowledge the support of the National Science Foundation under Grants CCR87-00917 and CCR90-02352. The fourth author was supported in part by a National Science Foundation Graduate Fellowship. This work was begun while the first author was visiting the DEC Systems Research Center.
Communicated by Bernard Chazelle.