1.

E. Beltrametti and G. Cassinelli,*The Logic of Quantum Mechanics* (Encyclopeada of Mathematics and its Applications, Vol. 15, Gian-Carlo Rota, ed., Addison-Wesley, Reading, Massachusetts, 1981).

2.

J. Dacey,*Orthomodular Spaces*, Ph.D. Thesis, University of Massachusetts, Amherst, 1968.

3.

D. Foulis and C. Randall, “Empirical logic and tensor products,” in*Interpretations and Foundations of Quantum Theory*, H. Neumann, ed. (Bibliographisches Institut Mannheim, Wien, 1981).

4.

D. Foulis and C. Randall, “What are quantum logics and what ought they to be?,” in*Current Issues in Quantum Logic*, E. Beltrametti and B. van Fraassen, eds. (Ettore Majorana International Science Series, 8) (Plenum, New York, 1981).

5.

A. Gleason, “Measures on closed subspaces of a Hilbert space,”*J. Math. Mech.*
**6**, 885–893 (1957).

6.

A. Golfin,*Representations and Products of Lattices*, Ph.D. Thesis, University of Massachusetts, Amherst, 1987.

7.

R. Greechie and S. Gudder, “Quantum logics,” in*The Logico-Algebraic Approach to Quantum Mechanics*, Vol. I:*Historical Evolution*, C. A. Hooker, ed. (Reidel, Dordrecht, 1975).

8.

S. Gudder,*Quantum Probability* (Academic Press, San Diego, 1988).

9.

G. Hardegree and P. Frazer, “Charting the labyrinth of quantum logics,” in*Current Issues in Quantum Logic*, E. Beltrametti and B. van Fraassen, eds. (Ettore Majorana International Science Series, 8) (Plenum, New York, 1981).

10.

M. Janowitz, “The near center of an orthomodular lattice,”*J. Aust. Math. Soc.*
**14**, Part 1, 20–29 (1972).

11.

G. Kalmbach,*Orthomodular Lattices* (Academic Press, New York, 1983).

12.

M. Kläy,*Stochastic Models on Empirical Systems, Empirical Logics and Quantum Logics, and States on Hypergraphs*, Ph.D. Thesis, University of Bern, Switzerland, 1985.

13.

M. Kläy, C. Randall, and D. Foulis, “Tensor products and probability weights,”*Int. J. Theor. Phys.*
**26**(3), 199–219 (1987).

14.

P. Lock and G. Hardegree, “Connections among quantum logics, Part 1: Quantum propositional logics,”*Int. J. Theor. Phys.*
**24**(1), 43–53 (1984).

15.

P. Lock and G. Hardegree, “Connections among quantum logics, Part 2: Quantum event logics,”*Int. J. Theor. Phys.*
**24**(1), 55–61 (1984).

16.

R. Lock,*Constructing the Tensor Product of Generalized Sample Spaces*, Ph.D. Thesis, University of Massachusetts, Amherst, 1981.

17.

P. Mittelstaedt,*Philosophical Problems of Modern Physics* (Reidel, Dordrecht, 1976).

18.

P. Mittelstaedt,*Quantum Logic* (Reidel, Dordrecht, 1978).

19.

P. Mittelstaedt, “The concepts of truth, possibility, and probability in the language of quantum physics,” in*Interpretations and Foundations of Quantum Theory*, H. Neumann, ed. (Bibliographisches Institut Mannheim, Wien, 1981).

20.

C. Piron,*Foundations of Quantum Physics* (Mathematical Physics Monograph Series), A. Wightman, ed. (Benjamin, Reading, Massachusetts, 1976).

21.

S. Pulmannová, “Tensor product of quantum logics,”*J. Math. Phys.*
**26**(1), 1–5 (1985).

22.

C. Randall and D. Foulis, “Tensor products of quantum logics do not exist,”*Not. Am. Math. Soc.*
**26**(6), A-557 (1979).

23.

C. Randall and D. Foulis, “Operational statistics and tensor products,” in*Interpretations and Foundations of Quantum Theory*, H. Neumann, ed. (Bibliographisches Institut Mannheim, Wien, 1981).

24.

R. Streater and A. Wightman,*PCT, Spin and Statistics, and All That* (Mathematical Physics Monograph Series), A. S. Wightman, ed. (Benjamin, Reading, Massachusetts, 1964).

25.

R. Wright, “Spin manuals,” in*Mathematical Foundations of Quantum Theory*, A. R. Marlow, ed. (Academic Press, New York, 1978).

26.

M. Younce,*Random Variables on Non-Boolean Structures*, Ph.D. Thesis, University of Massachusetts, Amherst, 1987.